Аминокислоты для человека – список, формулы, характеристики. Роль аминокислот в организме. В каких продуктах содержатся аминокислоты?

Содержание

Незаменимые аминокислоты — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 сентября 2018; проверки требуют 53 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 сентября 2018; проверки требуют 53 правки. 21 протеиногенная α-аминокислота эукариот, сгруппированные согласно радикалам.

Незаменимые аминокислоты — необходимые аминокислоты, которые не могут быть синтезированы в том или ином организме. Для разных видов организмов список незаменимых аминокислот различен. Все белки, синтезируемые организмом, собираются в клетках из 20 базовых аминокислот, только часть из которых может синтезироваться организмом. Невозможность сборки определенного белка организмом приводит к нарушению его нормальной работы, поэтому необходимо поступление незаменимых аминокислот в организм с пищей. [1]

Незаменимыми для взрослого здорового человека являются 8 аминокислот: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин; также часто к незаменимым относят гистидин

[2][3]; (F V T W M L I K H). Для детей также незаменимым является аргинин.

6 других аминокислот (R C G Q P Y) считаются условно незаменимыми в питании человека, что означает ограниченные возможности их синтеза в зависимости от состояния организма, например у новорожденных и больных людей.[4].

5 аминокислот (A D N E S) - заменимые у человека, означает что они могут синтезироваться в достаточных количествах в организме.[4]

Роль незаменимых для человека аминокислот[править | править код]

В результате дефицита необходимых аминокислот в организме человека нарушается синтез белков, что приводит к ослаблению функций памяти и умственных способностей, снижению иммунитета (сопротивляемости организма болезням). В то же время избыток потребления несбалансированного белка приводит к перегрузке работы органов, в первую очередь печени и почек. Ценность потребляемого с пищей белка для человека определяется его сбалансированностью по содержанию незаменимых аминокислот.

[1]

Рассчитать требования к рекомендованной суточной норме достаточно сложно; эти значения претерпели значительные изменения за последние 20 лет. Следующая таблица представляет список рекомендованных ВОЗ и Национальной библиотекой медицины США суточных норм для взрослого человека.[5][6]

Аминокислота(ы) ВОЗ мг на 1 кг веса тела ВОЗ мг для веса 70 кг США мг на 1 кг веса тела Кодирующий кодон генетического кода
H Гистидин 10 700 14 CAU, CAC
I Изолейцин 20 1400 19 AUU, AUC, AUA
L Лейцин 39 2730 42 UUA, UUG, CUU, CUC, CUA, CUG
K Лизин 30 2100 38 AAA, AAG
M Метионин

+ C Цистеин

10.4 + 4.1 (15 всего) 1050 всего 19 всего Метионин: AUG; Цистеин: UGU, UGC.
F Фенилаланин

+ Y Тирозин

25 (всего) 1750 всего 33 всего Фенилаланин: UUU, UUC; Тирозин: UAU,UAC .
T Треонин 15 1050 20 ACU, ACC, ACA, ACG
W Триптофан 4 280 5 UGG
V Валин 26 1820 24 GUU, GUC, GUA, GUG

Рекомендованная суточная норма для детей от 3 лет и старше на 10-20% выше, чем для взрослого.[5][7]

Продукты с повышенным содержанием отдельных незаменимых аминокислот[править | править код]

  • Валин: зерновые, бобовые, арахис, грибы, молочные продукты, мясо.
  • Изолейцин: миндаль, кешью, турецкий горох (нут), чечевица, рожь, большинство семян, соя, яйца, куриное мясо, рыба, печень, мясо.
  • Лейцин: чечевица, орехи, большинство семян, овёс, бурый (неочищенный) рис, рыба, яйца, курица, мясо.
  • Лизин: пшеница, орехи, амарант, молочные продукты, рыба, мясо, горох.
  • Метионин: бобы, фасоль, чечевица, соя, молоко, яйца, рыба, мясо.
  • Треонин: орехи, бобы, молочные продукты, яйца.
  • Триптофан: бобовые, овёс, сушёные финики
    [источник не указан 1927 дней]
    , арахис, кунжут, кедровые орехи, молоко, йогурт, творог, рыба, курица, индейка, мясо.
  • Фенилаланин: бобовые, орехи, говядина, куриное мясо, рыба, яйца, творог, молоко. Также образуется в организме при распаде синтетического сахарозаменителя — аспартама, активно используемого в пищевой промышленности.
  • Аргинин (частично-заменимая аминокислота, образуется из аминокислот, поступающих с пищей, не путать с условно-заменимыми, которые образуются из незаменимых кислот, не поступающих с пищей): семена тыквы, арахис, кунжут, йогурт, швейцарский сыр, свинина, говядина, горох.
  • Гистидин (частично-заменимая аминокислота): соевые бобы, арахис, чечевица, тунец, лосось, куриные грудки, свиная вырезка, говяжье филе.

Компенсация незаменимых аминокислот[править | править код]

Несмотря на то, что самостоятельно организм не способен синтезировать незаменимые аминокислоты, их недостаток в некоторых случаях все же может быть частично компенсирован. Так, например, недостаток поступающего вместе с пищей незаменимого фенилаланина может быть частично замещен заменимым тирозином. Гомоцистеин вместе с необходимым количеством доноров метильных групп снижает потребности в метионине, а глутаминовая кислота частично замещает аргинин.

  1. 1 2 https://cyberleninka.ru/article/n/metodologiya-otsenki-sbalansirovannosti-aminokislotnogo-sostava-mnogokomponentnyh-pischevyh-produktov.pdf
  2. ↑ https://www.ncbi.nlm.nih.gov/pubmed/1123426 1975
  3. ↑ apps.who.int/iris/bitstream/10665/38133/1/9251030979_eng.pdf 1991
  4. 1 2 Dietary Reference Intakes: The Essential Guide to Nutrient Requirements Архивировано 5 июля 2014 года.. Institute of Medicine's Food and Nutrition Board. usda.gov
  5. 1 2 FAO/WHO/UNU. PROTEIN AND AMINO ACID REQUIREMENTS IN HUMAN NUTRITION (неопр.). WHO Press (2007)., page 150
  6. Institute of Medicine (англ.)русск.. Protein and Amino Acids // Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (англ.). — Washington, DC: The National Academies Press (англ.)русск., 2002. — P. 589—768.
  7. Imura K., Okada A. Amino acid metabolism in pediatric patients (неопр.) // Nutrition. — 1998. — Т. 14, № 1. — С. 143—148. — DOI:10.1016/S0899-9007(97)00230-X. — PMID 9437700.
  • Amino acids / MedlinePlus Encyclopedia, 2015: (англ.) «The 9 essential amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine.»
  • https://web.archive.org/web/20150226110517/http://www.uic.edu/classes/phar/phar332/Clinical_Cases/aa%20metab%20cases/PKU%20Cases/essential-nonessential.htm
  • ESSENTIAL AMINO ACID REQUIREMENTS: A REVIEW / FAO, 1981
  • Recommended Dietary Allowances: 10th Edition., National Research Council (US), National Academies Press 1989. Chapter 6 «Protein and Amino Acids» (англ.)

Список аминокислот и их свойства

Оглавление

  1. Аланин
  2. Аргинин
  3. Аспарагин
  4. Карнитин
  5. Цитруллин
  6. Цистеин и цистин
  7. Диметилглицин
  8. Гамма-аминомасляная кислота
  9. Глютаминовая кислота
  10. Глютамин
  11. Глютатион
  12. Глицин
  13. Гистидин
  14. Изолейцин
  15. Лейцин
  16. Лизин
  17. Метионин
  18. Орнитин
  19. Фенилаланин
  20. Пролин
  21. Серин
  22. Таурин
  23. Треонин
  24. Триптофан
  25. Тирозин
  26. Валин

Аминокислоты представляют собой структурные химические единицы или "строительные кирпичики", образующие белки. Аминокислоты на 16% состоят из азота, это является их основным химическим отличием от двух других важнейших элементов питания – углеводов и жиров. Важность аминокислот для организма определяется той огромной ролью, которую играют белки во всех процессах жизнедеятельности.

Любой живой организм от самых крупных животных до крошечных микробов состоит из белков. Разнообразные формы белков принимают участие во всех процессах, происходящих в живых организмах. В теле человека из белков формируются мышцы, связки, сухожилия, все органы и железы, волосы, ногти. Белки входят в состав жидкостей и костей. Ферменты и гормоны, катализирующие и регулирующие все процессы в организме, также являются белками. Дефицит этих элементов питания в организме может привести к нарушению водного баланса, что вызывает отеки.

Каждый белок в организме уникален и существует для специальных целей. Белки не являются взаимозаменяемыми. Они синтезируются в организме из аминокислот, которые образуются в результате расщепления белков, находящихся в пищевых продуктах. Таким образом, именно аминокислоты, а не сами белки являются наиболее ценными элементами питания. Помимо того, что аминокислоты образуют белки, входящие в состав тканей и органов человеческого организма, некоторые из них выполняют роль нейромедиаторов (нейротрансмиттеров) или являются их предшественниками.

Нейромедиаторы – это химические вещества, передающие нервный импульс от одной нервной клетки другой. Таким образом, некоторые аминокислоты необходимы для нормальной работы головного мозга. Аминокислоты способствуют тому, что витамины и минералы адекватно выполняют свои функции. Некоторые аминокислоты непосредственно снабжают энергией мышечную ткань.

В организме человека многие аминокислоты синтезируются в печени. Однако некоторые из них не могут быть синтезированы в организме, поэтому человек обязательно должен получать их с пищей. К таким незаменимым аминокислотам относятся – гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Аминокислоты, которые синтезируются в печен: аланин, аргинин, аспарагин, аспарагиновая кислота, цитруллин, цистеин, гамма-аминомасляную кислоту, глютамин и глютаминовая кислота, глицин, орнитин, пролин, серин, таурин, тирозин.

Процесс синтеза белков идет в организме постоянно. В случае, когда хоть одна незаменимая аминокислота отсутствует, образование белков приостанавливается. Это может привести к самым различным серьезным проблемам – от нарушения пищеварения до депрессии и замедления роста.

Как возникает такая ситуация? Легче, чем это можно себе представить. Многие факторы приводят к этому, даже, если ваше питание сбалансировано и вы потребляете достаточное количество белка. Нарушение всасывания в желудочно-кишечном тракте, инфекция, травма, стресс, прием некоторых лекарственных препаратов, процесс старения и дисбаланс других питательных веществ в организме – все это может привести к дефициту незаменимых аминокислот.

Следует иметь в виду, что все вышесказанное вовсе не означает, что потребление большого количества белков поможет решить любые проблемы. В действительности, это не способствует сохранению здоровья.

Избыток белков создает дополнительный стресс для почек и печени, которым надо перерабатывать продукты метаболизма белков, основным из них является аммиак. Он очень токсичен для организма, поэтому печень немедленно перерабатывает его в мочевину, которая затем поступает с током крови в почки, где отфильтровывается и выводится наружу.

До тех пор, пока количество белка не слишком велико, а печень работает хорошо, аммиак нейтрализуется сразу же и не причиняет никакого вреда. Но если его слишком много и печень не справляется с его обезвреживанием (в результате неправильного питания, нарушения пищеварения и/или заболеваний печени) – в крови создается токсический уровень аммиака. При этом может возникнуть масса серьезных проблем со здоровьем, вплоть до печеночной энцефалопатии и комы.

Слишком высокая концентрация мочевины также вызывает повреждение почек и боли в спине. Следовательно, важным является не количество, а качество потребляемых с пищей белков. В настоящее время можно получать незаменимые и заменимые аминокислоты в виде биологически активных пищевых добавок.

Это особенно важно при различных заболеваниях и при применении редукционных диет. Вегетарианцам необходимы такие добавки, содержащие незаменимые аминокислоты, чтобы организм получал все необходимое для нормального синтеза белков.

Имеются разные виды добавок, содержащих аминокислоты. Аминокислоты входят в состав некоторых поливитаминов, белковых смесей. Есть в продаже формулы, содержащие комплексы аминокислот или содержащие одну или две аминокислоты. Они представлены в различных формах: в капсулах, таблетках, жидкостях и порошках.

Большинство аминокислот существует в виде двух форм, химическая структура одной является зеркальным отображением другой. Они называются D- и L-формами, например D-цистин и L-цистин.

D означает dextra (правая на латыни), а L – levo (соответственно, левая). Эти термины обозначают направление вращения спирали, являющейся химической структурой данной молекулы. Белки животных и растительных организмов созданы в основном L-формами аминокислот (за исключением фенилаланина, который представлен D, L формами).

Пищевые добавки, содержащие L-аминокислоты, считаются более подходящими для биохимических процессов человеческого организма.
Свободные, или несвязанные, аминокислоты представляют собой наиболее чистую форму. Поэтому при выборе добавки, содержащей аминокислоты, предпочтение следует отдавать продуктам, содержащим L-кристаллические аминокислоты, стандартизированные по Американской Фармакопее (USP). Они не нуждаются в переваривании и абсорбируются непосредственно в кровоток. После приема внутрь всасываются очень быстро и, как правило, не вызывают аллергических реакций.

Отдельные аминокислоты принимают натощак, лучше всего утром или между приемами пищи с небольшим количеством витаминов В6 и С. Если вы принимаете комплекс аминокислот, включающий все незаменимые, это лучше делать через 30 минут после или за 30 минут до еды. Лучше всего принимать и отдельные нужные аминокислоты, и комплекс аминокислот, но в разное время. Отдельно аминокислоты не следует принимать в течение длительного времени, особенно в высоких дозах. Рекомендуют прием в течение 2 месяцев с 2-месячным перерывом.

Аланин

Аланин способствует нормализации метаболизма глюкозы. Установлена взаимосвязь между избытком аланина и инфицированием вирусом Эпштейна-Барра, а также синдромом хронической усталости. Одна из форм аланина – бета-аланин является составной частью пантотеновой кислоты и коэнзима А – одного из самых важных катализаторов в организме.

Аргинин

Аргинин замедляет рост опухолей, в том числе раковых, за счет стимуляции иммунной системы организма. Он повышает активность и увеличивает размер вилочковой железы, которая вырабатывает Т-лимфоциты. В связи с этим аргинин полезен людям, страдающим ВИЧ-инфекцией и злокачественными новообразованиями.

Его также применяют при заболеваниях печени (циррозе и жировой дистрофии), он способствует дезинтоксикационным процессам в печени (прежде всего обезвреживанию аммиака). Семенная жидкость содержит аргинин, поэтому его иногда применяют в комплексной терапии бесплодия у мужчин. В соединительной ткани и в коже также находится большое количество аргинина, поэтому его прием эффективен при различных травмах. Аргинин – важный компонент обмена веществ в мышечной ткани. Он способствует поддержанию оптимального азотного баланса в организме, так как участвует в транспортировке и обезвреживании избыточного азота в организме.

Аргинин помогает снизить вес, так как вызывает некоторое уменьшение запасов жира в организме.

Аргинин входит в состав многих энзимов и гормонов. Он оказывает стимулирующее действие на выработку инсулина поджелудочной железой в качестве компонента вазопрессина (гормона гипофиза) и помогает синтезу гормона роста. Хотя аргинин синтезируется в организме, его образование может быть снижено у новорожденных. Источниками аргинина являются шоколад, кокосовые орехи, молочные продукты, желатин, мясо, овес, арахис, соевые бобы, грецкие орехи, белая мука, пшеница и пшеничные зародыши.

Люди, имеющие вирусные инфекции, в том числе Herpes simplex, не должны принимать аргинин в виде пищевых добавок и должны избегать потребления продуктов, богатых аргинином. Беременным и кормящим грудью матерям не следует употреблять пищевые добавки с аргинином. Прием небольших доз аргинина рекомендуется при заболеваниях суставов и соединительной ткани, при нарушениях толерантности к глюкозе, заболеваниях печени и травмах. Длительный прием не рекомендован.

Аспарагин

Аспарагин необходим для поддержания баланса в процессах, происходящих в центральной нервной системе: препятствует как чрезмерному возбуждению, так и излишнему торможению. Он участвует в процессах синтеза аминокислот в печени.

Так как эта аминокислота повышает жизненную силу, добавку на ее основе применяют при усталости. Она играет также важную роль в процессах метаболизма. Аспартовую кислоту часто назначают при заболеваниях нервной системы. Она полезна спортсменам, а также при нарушениях функции печени. Кроме того, он стимулирует иммунитет за счет повышения продукции иммуноглобулинов и антител.

Аспартовая кислота в больших количествах содержится в белках растительного происхождения, полученных из пророщенных семян и в мясных продуктах.

Карнитин

Строго говоря, карнитин не является аминокислотой, но его химическая структура сходна со структурой аминокислот, и поэтому их обычно рассматривают вместе. Карнитин не участвует в синтезе белков и не является нейромедиатором. Его основная функция в организме – это транспорт длинноцепочечных жирных кислот, в процессе окисления которых выделяется энергия. Это один из основных источников энергии для мышечной ткани. Таким образом, карнитин увеличивает переработку жира в энергию и предотвращает отложение жира в организме, прежде всего в сердце, печени, скелетной мускулатуре.

Карнитин снижает вероятность развития осложнений сахарного диабета, связанных с нарушениями жирового обмена, замедляет жировое перерождение печени при хроническом алкоголизме и риск возникновения заболеваний сердца. Он обладает способностью снижать уровень триглицеридов в крови, способствует снижению массы тела и повышает силу мышц у больных с нервно-мышечными заболеваниями и усиливает антиоксидантное действие витаминов С и Е.

Считается, что некоторые варианты мышечных дистрофий связаны с дефицитом карнитина. При таких заболеваниях люди должны получать большее количество этого вещества, чем это положено по нормам.

Он может синтезироваться в организме при наличии железа, тиамина, пиридоксина и аминокислот лизина и метионина. Синтез карнитина осуществляется в присутствии также достаточного количества витамина С. Недостаточное количество любого из этих питательных веществ в организме приводит к дефициту карнитина. Карнитин поступает в организм с пищей, прежде всего с мясом и другими продуктами животного происхождения.

Большинство случаев дефицита карнитина связано с генетически обусловленным дефектом в процессе его синтеза. К возможным проявлениям недостаточности карнитина относятся нарушения сознания, боли в сердце, слабость в мышцах, ожирение.

Мужчинам вследствие большей мышечной массы требуется большее количество карнитина, чем женщинам. У вегетарианцев более вероятно возникновение дефицита этого питательного вещества, чем у невегетарианцев, в связи с тем, что карнитин не встречается в белках растительного происхождения.

Более того, метионин и лизин (аминокислоты, необходимые для синтеза карнитина) также не содержатся в растительных продуктах в достаточных количествах.

Для получения необходимого количества карнитина вегетарианцы должны принимать пищевые добавки или есть обогащенные лизином продукты, такие как кукурузные хлопья.

Карнитин представлен в биологически активных пищевых добавках в различных формах: в виде D, L-карнитина, D-карнитина, L-карнитина, ацетил-L-карнитина.
Предпочтительнее принимать L-карнитин.

Цитруллин

Цитруллин преимущественно находится в печени. Он повышает энергообеспечение, стимулирует иммунную систему, в процессе обмена веществ превращается в L-аргинин. Он обезвреживает аммиак, повреждающий клетки печени.

Цистеин и цистин

Эти две аминокислоты тесно связаны между собой, каждая молекула цистина состоит из двух молекул цистеина, соединенных друг с другом. Цистеин очень нестабилен и легко переходит в L-цистин, и, таким образом, одна аминокислота легко переходит в другую при необходимости.

Обе аминокислоты относятся к серосодержащим и играют важную роль в процессах формирования тканей кожи, имеют значение для дезинтоксикационных процессов. Цистеин входит в состав альфа-кератина – основного белка ногтей, кожи и волос. Он способствует формированию коллагена и улучшает эластичность и текстуру кожи. Цистеин входит в состав и других белков организма, в том числе некоторых пищеварительных ферментов.

Цистеин помогает обезвреживать некоторые токсические вещества и защищает организм от повреждающего действия радиации. Он представляет собой один из самых мощных антиоксидантов, при этом его антиоксидантное действие усиливается при одновременном приеме с витамином С и селеном.

Цистеин является предшественником глютатиона – вещества, оказывающего защитное действие на клетки печени и головного мозга от повреждения алкоголем, некоторых лекарственных препаратов и токсических веществ, содержащихся в сигаретном дыме. Цистеин растворяется лучше, чем цистин, и быстрее утилизируется в организме, поэтому его чаще используют в комплексном лечении различных заболеваний. Это аминокислота образуется в организме из L-метионина, при обязательном присутствии витамина В6.

Дополнительный прием цистеина необходим при ревматоидном артрите, заболеваниях артерий, раке. Он ускоряет выздоровление после операций, ожогов, связывает тяжелые металлы и растворимое железо. Эта аминокислота также ускоряет сжигание жиров и образование мышечной ткани.

L-цистеин обладает способностью разрушать слизь в дыхательных путях, благодаря этому его часто применяют при бронхитах и эмфиземе легких. Он ускоряет процессы выздоровления при заболеваниях органов дыхания и играет важную роль в активизации лейкоцитов и лимфоцитов.

Так как это вещество увеличивает количество глютатиона в легких, почках, печени и красном костном мозге, оно замедляет процессы старения, например, уменьшая количество старческих пигментных пятен. N-ацетилцистеин более эффективно повышает уровень глютатиона в организме, чем цистин или даже сам глютатион.

Люди с сахарным диабетом должны быть осторожны при приеме добавок с цистеином, так как он обладает способностью инактивировать инсулин. При цистинурии, редком генетическом состоянии, приводящем к образованию цистиновых камней, принимать цистеин нельзя.

Диметилглицин

Диметилглицин – это производная глицина – самой простой аминокислоты. Он является составным элементом многих важных веществ, таких как аминокислоты метионин и холин, некоторых гормонов, нейромедиаторов и ДНК.

В небольших количествах диметилглицин встречается в мясных продуктах, семенах и зернах. Хотя с дефицитом диметилглицина не связано никаких симптомов, прием пищевых добавок с диметилглицином оказывает целый ряд положительных эффектов, включая улучшение энергообеспечения и умственной деятельности.

Диметилглицин также стимулирует иммунитет, уменьшает содержание холестерина и триглицеридов в крови, помогает нормализации артериального давления и уровня глюкозы, а также способствует нормализации функции многих органов. Его также применяют при эпилептических припадках.

Гамма-аминомасляная кислота

Гамма-аминомасляная кислота (GABA) выполняет в организме функцию нейромедиатора центральной нервной системы и незаменима для обмена веществ в головном мозге. Образуется она из другой аминокислоты – глютаминовой. Она уменьшает активность нейронов и предотвращает перевозбуждение нервных клеток.

Гамма-аминомасляная кислота снимает возбуждение и оказывает успокаивающее действие, ее можно принимать также как транквилизаторы, но без риска развития привыкания. Эту аминокислоту используют в комплексном лечении эпилепсии и артериальной гипертензии. Так как она оказывает релаксирующее действие, ее применяют при лечении нарушений половых функций. Кроме того, GABA назначают при синдроме дефицита внимания. Избыток гамма-аминомасляной кислоты, однако, может увеличить беспокойство, вызывает одышку, дрожание конечностей.

Глютаминовая кислота

Глютаминовая кислота является нейромедиатором, передающим импульсы в центральной нервной системе. Эта аминокислота играет важную роль в углеводном обмене и способствует проникновению кальция через гематоэнцефалический барьер.

Эта аминокислота может использоваться клетками головного мозга в качестве источника энергии. Она также обезвреживает аммиак, отнимая атомы азота в процессе образования другой аминокислоты – глютамина. Этот процесс – единственный способ обезвреживания аммиака в головном мозге.

Глютаминовую кислоту применяют при коррекции расстройств поведения у детей, а также при лечении эпилепсии, мышечной дистрофии, язв, гипогликемических состояний, осложнений инсулинотерапии сахарного диабета и нарушений умственного развития.

Глютамин

Глютамин – это аминокислота, наиболее часто встречающаяся в мышцах в свободном виде. Он очень легко проникает через гематоэнцефалический барьер и в клетках головного мозга переходит в глютаминовую кислоту и обратно, кроме того увеличивает количество гамма-аминомасляной кислоты, которая необходима для поддержания нормальной работы головного мозга.

Эта аминокислота также поддерживает нормальное кислотно-щелочное равновесие в организме и здоровое состояние желудочно-кишечного тракта, необходим для синтеза ДНК и РНК.

Глютамин – активный участник азотного обмена. Его молекула содержит два атома азота и образуется из глютаминовой кислоты путем присоединения одного атома азота. Таким образом, синтез глютамина помогает удалить избыток аммиака из тканей, прежде всего из головного мозга и переносить азот внутри организма.

Глютамин находится в больших количествах в мышцах и используется для синтеза белков клеток скелетной мускулатуры. Поэтому пищевые добавки с глютамином применяются культуристами и при различных диетах, а также для профилактики потери мышечной массы при таких заболеваниях, как злокачественные новообразования и СПИД, после операций и при длительном постельном режиме.

Дополнительно глютамин применяют также при лечении артритов, аутоиммунных заболеваниях, фиброзах, заболеваниях желудочно-кишечного тракта, пептических язвах, заболеваниях соединительной ткани.

Эта аминокислота улучшает деятельность мозга и поэтому применяется при эпилепсии, синдроме хронической усталости, импотенции, шизофрении и сенильной деменции. L-глютамин уменьшает патологическую тягу к алкоголю, поэтому применяется при лечении хронического алкоголизма.

Глютамин содержится во многих продуктах как растительного, так и животного происхождения, но он легко уничтожается при нагревании. Шпинат и петрушка являются хорошими источниками глютамина, но при условии, что их потребляют в сыром виде.

Пищевые добавки, содержащие глютамин, следует хранить только в сухом месте, иначе глютамин переходит в аммиак и пироглютаминовую кислоту. Не принимают глютамин при циррозе печени, заболеваниях почек, синдроме Рейе.

Глютатион

Глютатион, так же как и карнитин, не является аминокислотой. По химической структуре это трипептид, получаемый в организме из цистеина, глютаминовой кислоты и глицина.

Глютатион является антиоксидантом. Больше всего глютатиона находится в печени (некоторое его количество высвобождается прямо в кровоток), а также в легких и желудочно-кишечном тракте.

Он необходим для углеводного обмена, а также замедляет старение за счет влияния на липидный обмен и предотвращает возникновения атеросклероза. Дефицит глютатиона сказывается  прежде всего на нервной системе, вызывая нарушения координации, мыслительных процессов, тремор.

Количество глютатиона в организме уменьшается с возрастом. В связи с этим пожилые люди должны получать его дополнительно. Однако предпочтительнее употреблять пищевые добавки, содержащие цистеин, глютаминовую кислоту и глицин – то есть вещества, синтезирующие глютатион. Наиболее эффективным считается прием N-ацетилцистеина.

Глицин

Глицин замедляет дегенерацию мышечной ткани, так как является источником креатина – вещества, содержащегося в мышечной ткани и используемого при синтезе ДНК и РНК. Глицин необходим для синтеза нуклеиновых кислот, желчных кислот и заменимых аминокислот в организме.

Он входит в состав многих антацидных препаратов, применяемых при заболеваниях желудка, полезен для восстановления поврежденных тканей, так как в больших количествах содержится в коже и соединительной ткани.

Эта аминокислота необходима для нормального функицонирования центральной нервной системы и поддержки хорошего состояния предстательной железы. Он выполняет функцию тормозного нейромедиатора и, таким образом, может предотвратить эпилептические судороги.

Глицин применяют в лечении маниакально-депрессивного психоза, он также может быть эффективен при гиперактивности. Избыток глицина в организме вызывает чувство усталости, но адекватное количество обеспечивает организм энергией. При необходимости глицин в организме может превращаться в серин.

Гистидин

Гистидин – это незаменимая аминокислота, способствующая росту и восстановлению тканей, которая входит в состав миелиновых оболочек, защищающих нервные клетки, а также необходима для образования красных и белых клеток крови. Гистидин защищает организм от повреждающего действия радиации, способствует выведению тяжелых металлов из организма и помогает при СПИДе.

Слишком высокое содержание гистидина может привести к возникновению стресса и даже психических нарушений (возбуждения и психозов).

Неадекватное содержание гистидина в организме ухудшает состояние при ревматоидном артрите и при глухоте, связанной с поражением слухового нерва. Метионин способствует понижению уровня гистидина в организме.

Гистамин, очень важный компонент многих иммунологических реакций, синтезируется из гистидина. Он также способствует возникновению полового возбуждения. В связи с этим одновременный прием биологически активных пищевых добавок, содержащих гистидин, ниацин и пиридоксин (необходимых для синтеза гистамина), может оказаться эффективным при половых расстройствах.

Так как гистамин стимулирует секрецию желудочного сока, применение гистидина помогает при нарушениях пищеварения, связанных с пониженной кислотностью желудочного сока.

Люди, страдающие маниакально-депрессивным психозом, не должны принимать гистидин, за исключением случаев, когда дефицит этой аминокислоты точно установлен. Гистидин находится в рисе, пшенице и ржи.

Изолейцин

Изолейцин – одна из аминокислот BCAA и незаменимых аминокислот, необходимых для синтеза гемоглобина. Также стабилизирует и регулирует уровень сахара в крови и процессы энергообеспечения.Метаболизм изолейцина происходит в мышечной ткани.

Совместный прием с изолейцином и валином (BCAA) увеличиваtт выносливость и способствуют восстановлению мышечной ткани, что особенно важно для спортсменов.

Изолейцин необходим при многих психических заболеваниях. Дефицит этой аминокислоты приводит к возникновению симптомов, сходных с гипогликемией.

К пищевым источниками изолейцина относятся миндаль, кешью, куриное мясо, турецкий горох, яйца, рыба, чечевица, печень, мясо, рожь, большинство семян, соевые белки.

Имеются биологически активные пищевые добавки, содержащие изолейцин. При этом необходимо соблюдать правильный баланс между изолейцином и двумя другими разветвленными аминокислотами BCAA – лейцином и валином.

Лейцин

Лейцин – незаменимая аминокислота, вместе с изолейцином и валином относящаяся к трем разветвленным аминокислотам BCAA. Действуя вместе, они защищают мышечные ткани и являются источниками энергии, а также способствуют восстановлению костей, кожи, мышц, поэтому их прием часто рекомендуют в восстановительный период после травм и операций.

Лейцин также несколько понижает уровень сахара в крови и стимулирует выделение гормона роста. К пищевым источникам лейцина относятся бурый рис, бобы, мясо, орехи, соевая и пшеничная мука.

Биологически активные пищевые добавки, содержащие лейцин, применяются в комплексе с валином и изолейцином. Их следует принимать с осторожностью, чтобы не вызвать гипогликемии. Избыток лейцина может увеличить количество аммиака в организме.

Лизин

Лизин – незаменимая аминокислота, входящая в состав практически любых белков. Он необходим для нормального формирования костей и роста детей, способствует усвоению кальция и поддержанию нормального обмена азота у взрослых.

Эта аминокислота участвует в синтезе антител, гормонов, ферментов, формировании коллагена и восстановлении тканей. Лизин применяют в восстановительный период после операций и спортивных травм. Он также понижает уровень триглицеридов в сыворотке крови.

Лизин оказывает противовирусное действие, особенно в отношении вирусов, вызывающих герпес и острые респираторные инфекции. Прием добавок, содержащих лизин в комбинации с витамином С и биофлавоноидами, рекомендуется при вирусных заболеваниях.

Дефицит этой незаменимой аминокислоты может привести к анемии, кровоизлияниям в глазное яболко, ферментным нарушениям, раздражительности, усталости и слабости, плохому аппетиту, замедлению роста и снижению массы тела, а также к нарушениям репродуктивной системы.

Пищевыми источниками лизина являются сыр, яйца, рыба, молоко, картофель, красное мясо, соевые и дрожжевые продукты.

Метионин

Метионин – незаменимая аминокислота, помогающая переработке жиров, предотвращая их отложение в печени и на стенках артерий. Синтез таурина и цистеина зависит от количества метионина в организме. Эта аминокислота способствует пищеварению, обеспечивает дезинтоксикационные процессы (прежде всего обезвреживание токсичных металлов), уменьшает мышечную слабость, защищает от воздействия радиации, полезна при остеопорозе и химической аллергии.

Эту аминокислоту применяют в комплексной терапии ревматоидного артрита и токсикоза беременности. Метионин оказывает выраженное антиоксидантное действие, так как является хорошим источником серы, инактивирующей свободные радикалы. Его применяют при синдроме Жильбера, нарушениях функции печени. Метионин также необходим для синтеза нуклеиновых кислот, коллагена и многих других белков. Его полезно принимать женщинам, получающим оральные гормональные контрацептивы. Метионин понижает уровень гистамина в организме, что может быть полезно при шизофрении, когда количество гистамина повышено.

Метионин в организме переходит в цистеин, который является предшественником глютатиона. Это очень важно при отравлениях, когда требуется большое количество глютатиона для обезвреживания токсинов и защиты печени.

Пищевые источники метионина: бобовые, яйца, чеснок, чечевица, мясо, лук, соевые бобы, семена и йогурт.

Орнитин

Орнитин помогает высвобождению гормона роста, который способствует сжиганию жиров в организме. Этот эффект усиливается при применении орнитина в комбинации с аргинином и карнитином. Орнитин также необходим для иммунной системы и работы печени, участвуя в дезинтоксикационных процессах и восстановлении печеночных клеток.

Орнитин в организме синтезируется из аргинина и, в свою очередь, служит предшественником для цитруллина, пролина, глютаминовой кислоты. Высокие концентрации орнитина обнаруживаются в коже и соединительной ткани, поэтому эта аминокислота способствует восстановлению поврежденных тканей.

Нельзя давать биологически активные пищевые добавки, содержащие орнитин, детям, беременным и кормящим матерям, а также лицам с шизофренией в анамнезе.

Фенилаланин

Фенилаланин – это незаменимая аминокислота. В организме она может превращаться в другую аминокислоту – тирозин, которая, в свою очередь, используется в синтезе двух основных нейромедиаторов: допамина и норадреналина. Поэтому эта аминокислота влияет на настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит. Его используют в лечении артрита, депрессии, болей при менструации, мигрени, ожирения, болезни Паркинсона и шизофрении.

Фенилаланин встречается в трех формах: L-фенилаланин (естественная форма и именно она входит в состав большинства белков человеческого тела), D-фенилаланин (синтетическая зеркальная форма, обладает анальгирующим действием), DL-фенилаланин (объединяет полезные свойства двух предыдущих форм, ее обычно применяют при предменструальном синдроме.

Биологически активные пищевые добавки, содержащие фенилаланин, не дают беременным женщинам, лицам с приступами беспокойства, диабетом, высоким артериальным давлением, фенилкетонурией, пигментной меланомой.

Пролин

Пролин улучшает состояние кожи, за счет увеличения продукции коллагена и уменьшения его потери с возрастом. Помогает в восстановлении хрящевых поверхностей суставов, укрепляет связки и сердечную мышцу. Для укрепления соединительной ткани пролин лучше применять в комбинации с витамином С.

Пролин поступает в организм преимущественно из мясных продуктов.

Серин

Серин необходим для нормального обмена жиров и жирных кислот, роста мышечной ткани и поддержания нормального состояния иммунной системы.

Серин синтезируется в организме из глицина. В качестве увлажняющего вещества входит в состав многих косметических продуктов и дерматологических препаратов.

Таурин

Таурин в высокой концентрации содержится в сердечной мышце, белых клетках крови, скелетной мускулатуре, центральной нервной системе. Он участвует в синтезе многих других аминокислот, а также входит в состав основного компонента желчи, которая необходима для переваривания жиров, абсорбции жирорастворимых витаминов и для поддержания нормального уровня холестерина в крови.

Поэтому таурин полезен при атеросклерозе, отеках, заболеваниях сердца, артериальной гипертонии и гипогликемии. Таурин необходим для нормального обмена натрия, калия, кальция и магния. Он предотвращает выведение калия из сердечной мышцы и потому способствует профилактике некоторых нарушений сердечного ритма. Таурин оказывает защитное действие на головной мозг, особенно при дегидратации. Его применяют при лечении беспокойства и возбуждения, эпилепсии, гиперактивности, судорог.

Биологически активные пищевые добавки с таурином дают детям с синдромом Дауна и мышечной дистрофией. В некоторых клиниках эту аминокислоту включают в комплексную терапию рака молочной железы. Избыточное выведение таурина из организма встречается при различных состояниях и нарушениях обмена.

Аритмии, нарушения процессов образования тромбоцитов, кандидозы, физический или эмоциональный стресс, заболевания кишечника, дефицит цинка и злоупотребление алкоголем приводят к дефициту таурина в организме. Злоупотребление алкоголем к тому же нарушает способность организма усваивать таурин.

При диабете увеличивается потребность организма в таурине, и наоборот, прием БАД, содержащих таурин и цистин, уменьшает потребность в инсулине. Таурин находится в яйцах, рыбе, мясе, молоке, но не встречается в белках растительного происхождения.

Он синтезируется в печени из цистеина и из метионина в других органах и тканях организма, при условии достаточного количества витамина В6. При генетических или метаболических нарушениях, мешающих синтезу таурина, необходим прием БАД с этой аминокислотой.

Треонин

Треонин – это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме. Она важна для синтеза коллагена и эластина, помогает работе печени и участвует в обмене жиров в комбинации с аспартовой кислотой и метионином.

Треонин находится в сердце, центральной нервной системе, скелетной мускулатуре и препятствует отложенную жиров в печени. Эта аминокислота стимулирует иммунитет, так как способствует продукции антител. Треонин очень в незначительных количествах содержится в зернах, поэтому у вегетарианцев чаще возникает дефицит этой аминокислоты.

Триптофан

Триптофан – это незаменимая аминокислота, необходимая для продукции ниацина. Он используется для синтеза в головном мозге серотонина, одного из важнейших нейромедиаторов. Триптофан применяют при бессоннице, депрессии и для стабилизации настроения.

Он помогает при синдроме гиперактивности у детей, используется при заболеваниях сердца, для контроля за массой тела, уменьшения аппетита, а также для увеличения выброса гормона роста. Помогает при мигренозных приступах, способствует уменьшению вредного воздействия никотина. Дефицит триптофана и магния может усиливать спазмы коронарных артерий.

К наиболее богатым пищевым источникам триптофана относятся бурый рис, деревенский сыр, мясо, арахис и соевый белок.

Тирозин

Тирозин является предшественником нейромедиаторов норэпинефрина и допамина. Эта аминокислота участвует в регуляции настроения; недостаток тирозина приводит к дефициту норадреналина, что, в свою очередь, приводит к депрессии. Тирозин подавляет аппетит, способствует уменьшению отложения жиров, способствует выработке мелатонина и улучшает функции надпочечников, щитовидной железы и гипофиза.

Тирозин также участвует в обмене фенилаланина. Тиреоидные гормоны образуются при присоединении к тирозину атомов йода. Поэтому неудивительно, что низкое содержание тирозина в плазме связано с гипотиреозом.

Симптомами дефицита тирозина также являются пониженное артериальное давление, низкая температура тела и синдром беспокойных ног.

Биологически активные пищевые добавки с тирозином используют для снятия стресса, полагают, что они могут помочь при синдроме хронической усталости и нарколепсии. Их используют при тревоге, депрессии, аллергиях и головной боли, а также при отвыкании от лекарств. Тирозин может быть полезен при болезни Паркинсона. Естественные источники тирозина – миндаль, авокадо, бананы, молочные продукты, семечки тыквы и кунжут.

Тирозин может синтезироваться из фенилаланина в организме человека. БАД с фенилаланином лучше принимать перед сном или вместе с продуктами питания, содержащими большое количество углеводов.

На фоне лечения ингибиторами моноаминоксидазы (обычно их назначают при депрессии) следует практически полностью отказаться от продуктов, содержащих тирозин, и не принимать БАД с тирозином, так как это может привести к неожиданному и резкому подъему артериального давления.

Валин

Валин – незаменимая аминокислота, оказывающая стимулирующее действие, одна из аминокислот BCAA, поэтому может быть использована мышцами в качестве источника энергии. Валин необходим для метаболизма в мышцах, восстановления поврежденных тканей и для поддержания нормального обмена азота в организме.

Валин часто используют для коррекции выраженных дефицитов аминокислот, возникших в результате привыкания к лекарствам. Его чрезмерно высокий уровень в организме может привести к таким симптомам, как парестезии (ощущение мурашек на коже), вплоть до галлюцинаций.
Валин содержится в следующих пищевых продуктах: зерновые, мясо, грибы, молочные продукты, арахис, соевый белок.

Прием валина в виде пищевых добавок следует сбалансировать с приемом других разветвленных аминокислот BCAA – L-лейцина и L-изолейцина.

Аминокислоты — Википедия

Аминокисло́ты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот — это углерод (C), водород (H), кислород (O), и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот (хотя только 20 используются в генетическом коде). [1] Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.

Большинство из около 500 известных аминокислот были открыты после 1953 года, например во время поиска новых антибиотиков в среде микроорганизмов, грибов, семян, растений, фруктов и жидкостях животных. Примерно 240 из них встречается в природе в свободном виде, а остальные только как промежуточные элементы обмена веществ.[1]

Открытие аминокислот в составе белков[править | править код]

Аминокислота Аббревиатура Год Источник Впервые выделен[2]
Глицин Gly, G 1820 Желатин А. Браконно
Лейцин Leu, L 1820 Мышечные волокна А. Браконно
Тирозин Tyr, Y 1848 Казеин Ю. фон Либих
Серин Ser, S 1865 Шёлк Э. Крамер
Глутаминовая кислота Glu, E 1866 Растительные белки Г. Риттхаузен[de]
Глутамин Gln, Q
Аспарагиновая кислота Asp, D 1868 Конглутин, легумин (ростки спаржи) Г. Риттхаузен[en]
Аспарагин Asn, N 1806 Сок спаржи Л.-Н. Воклен и П. Ж. Робике
Фенилаланин Phe, F 1881 Ростки люпина Э. Шульце, Й. Барбьери
Аланин Ala, A 1888 Фиброин шелка А. Штреккер, Т. Вейль
Лизин Lys, K 1889 Казеин Э. Дрексель
Аргинин Arg, R 1895 Вещество рога С. Гедин
Гистидин His, H 1896 Стурин, гистоны А. Коссель[3], С. Гедин
Цистеин Cys, C 1899 Вещество рога К. Мёрнер
Валин Val, V 1901 Казеин Э. Фишер
Пролин Pro, P 1901 Казеин Э. Фишер
Гидроксипролин Hyp, hP 1902 Желатин Э. Фишер
Триптофан Trp, W 1902 Казеин Ф. Хопкинс, Д. Кол
Изолейцин Ile, I 1904 Фибрин Ф. Эрлих
Метионин Met, M 1922 Казеин Д. Мёллер
Треонин Thr, T 1925 Белки овса С. Шрайвер и др.
Гидроксилизин Hyl, hK 1925 Белки рыб С. Шрайвер и др.

Жирным шрифтом выделены незаменимые аминокислоты

По физическим свойствам аминокислоты резко отличаются от соответствующих кислот и оснований. Все они кристаллические вещества, лучше растворяются в воде, чем в органических растворителях, имеют достаточно высокие температуры плавления; многие из них имеют сладкий вкус. Эти свойства отчётливо указывают на солеобразный характер этих соединений. Особенности физических и химических свойств аминокислот обусловлены их строением — присутствием одновременно двух противоположных по свойствам функциональных групп: кислотной и основной.

Все аминокислоты — амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы  —COOH, так и основные свойства, обусловленные аминогруппой  —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:

NH2 —CH2 —COOH + HCl HCl • NH2 —CH2 —COOH (Хлороводородная соль глицина)
NH2 —CH2 —COOH + NaOH H2O + NH2 —CH2 —COONa (натриевая соль глицина)

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, то есть находятся в состоянии внутренних солей.

NH2 —CH2COOH Equilibrium rl.svg N+H3 —CH2COO-

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Этерификация:

NH2 —CH2 —COOH + CH3OH H2O + NH2 —CH2 —COOCH3 (метиловый эфир глицина)

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.

Реакция образования пептидов:

HOOC —CH2 —NH —H + HOOC —CH2 —NH2 HOOC —CH2 —NH —CO —CH2 —NH2 + H2O

Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3+, а карбоксигруппа — в виде -COO. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.

Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.

Большинство аминокислот можно получить в ходе гидролиза белков или как результат химических реакций:

CH3COOH + Cl2 + (катализатор) CH2ClCOOH + HCl; CH2ClCOOH + 2NH3 NH2 —CH2COOH + NH4Cl

Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметрический атом углерода (треонин и изолейцин содержат два асимметрических атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-конфигурацию, и лишь L-аминокислоты включаются в состав белка, синтезируемых на рибосомах.

Аспарагиновые остатки в метаболически неактивных структурных белках претерпевают медленную самопроизвольную неферментативную рацемизацию: в белках дентина и эмали зубов L-аспартат переходит в D-форму со скоростью ~0,1 % в год[4], что может быть использовано для определения возраста млекопитающих. Рацемизация аспартата также отмечена при старении коллагена; предполагается, что такая рацемизация специфична для аспарагиновой кислоты и протекает за счёт образования сукцинимидного кольца при внутримолекулярном ацилировании атома азота пептидной связи свободной карбоксильной группой аспарагиновой кислоты[5].

С развитием следового аминокислотного анализа D-аминокислоты были обнаружены сначала в составе клеточных стенок некоторых бактерий (1966), а затем и в тканях высших организмов.[6] Так, D-аспартат и D-метионин предположительно являются нейромедиаторами у млекопитающих[7].

В состав некоторых пептидов входят D-аминокислоты, образующиеся при посттрансляционной модификации. Например, D-метионин и D-аланин входят в состав опиоидных гептапептидов кожи южноамериканских амфибий филломедуз (дерморфина, дермэнкефалина и делторфинов). Наличие D-аминокислот определяет высокую биологическую активность этих пептидов как анальгетиков.

Сходным образом образуются пептидные антибиотики бактериального происхождения, действующие против грамположительных бактерий — низин, субтилин и эпидермин.[8]

Гораздо чаще D-аминокислоты входят в состав пептидов и их производных, образующихся путём нерибосомного синтеза в клетках грибов и бактерий. Видимо, в этом случае исходным материалом для синтеза служат также L-аминокислоты, которые изомеризуются одной из субъединиц ферментного комплекса, осуществляющего синтез пептида.

В процессе биосинтеза белка в полипептидную цепь включаются 20 α-аминокислот, кодируемых генетическим кодом. Помимо этих аминокислот, называемых протеиногенными, или стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, возникающие из стандартных в процессе посттрансляционных модификаций. В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин (Sec, U) и пирролизин (Pyl, O).[9][10] Это так называемые 21-я и 22-я аминокислоты.[11]

Вопрос, почему именно эти 20 аминокислот стали «избранными», остаётся нерешённым[12]. Решение этого вопроса смотрим в работе[13]. Не совсем ясно, чем эти аминокислоты оказались предпочтительнее других похожих. Например, ключевым промежуточным метаболитом пути биосинтеза треонина, изолейцина и метионина является α-аминокислота гомосерин. Очевидно, что гомосерин — очень древний метаболит, но для треонина, изолейцина и метионина существуют аминоацил-тРНК-синтетазы, тРНК, а для гомосерина — нет.

Структурные формулы 20 протеиногенных аминокислот обычно приводят в виде так называемой таблицы протеиногенных аминокислот:

Классификация[править | править код]

Аминокислота 3-буквы[14] 1-буква[14] аминокислот мнемоническое

правило[15]

Полярность[16] радикалу Mr Vw

3)

pI шкала гидрофобности[17] частота в белках (%)[18]
Глицин Gly G GGU, GGC, GGA, GGG Glycine Неполярные Алифатические 75.067 48 6.06 −0.4 7.03
Аланин Ala A GCU, GCC, GCA, GCG Alanine Неполярные Алифатические 89.094 67 6.01 1.8 8.76
Валин Val V GUU, GUC, GUA, GUG Valine Неполярные Алифатические 117.148 105 6.00 4.2 6.73
Изолейцин Ile I AUU, AUC, AUA Isoleucine Неполярные Алифатические 131.175 124 6.05 4.5 5.49
Лейцин Leu L UUA, UUG, CUU, CUC, CUA, CUG Leucine Неполярные Алифатические 131.175 124 6.01 3.8 9.68
Пролин Pro P CCU, CCC, CCA, CCG Proline Неполярные Гетероциклические 115.132 90 6.30 −1.6 5.02
Серин Ser S UCU, UCC, UCA, UCG, AGU, AGC Serine Полярные Оксимоноаминокарбоновые 105.093 73 5.68 −0.8 7.14
Треонин Thr T ACU, ACC, ACA, ACG Threonine Полярные Оксимоноаминокарбоновые 119.119 93 5.60 −0.7 5.53
Цистеин Cys C UGU, UGC Cysteine Полярные Серосодержащие 121.154 86 5.05 2.5 1.38
Метионин Met M AUG Methionine Неполярные Серосодержащие 149.208 124 5.74 1.9 2.32
Аспарагиновая

кислота

Asp D GAU, GAC asparDic acid Полярные

заряженные

отрицательно

заряженные отрицательно 133.104 91 2.85 −3.5 5.49
Аспарагин Asn N AAU, AAC asparagiNe Полярные Амиды 132.119 96 5.41 −3.5 3.93
Глутаминовая

кислота

Glu E GAA, GAG gluEtamic acid Полярные

заряженные

отрицательно

заряженные отрицательно 147.131 109 3.15 −3.5 6.32
Глутамин Gln Q CAA, CAG Q-tamine Полярные Амиды 146.146 114 5.65 −3.5 3.9
Лизин Lys K AAA, AAG before L Полярные заряженные положительно 146.189 135 9.60 −3.9 5.19
Аргинин Arg R CGU, CGC, CGA, CGG, AGA, AGG aRginine Полярные заряженные положительно 174.203 148 10.76 −4.5 5.78
Гистидин His H CAU, CAC Histidine Полярные

заряженные

положительно

Гетероциклические 155.156 118 7.60 −3.2 2.26
Фенилаланин Phe F UUU, UUC Fenylalanine Неполярные Ароматические 165.192 135 5.49 2.8 3.87
Тирозин Tyr Y UAU, UAC tYrosine Полярные Ароматические 181.191 141 5.64 −1.3 2.91
Триптофан Trp W UGG tWo rings Неполярные Ароматические,

Гетероциклические

204.228 163 5.89 −0.9 6.73
По радикалу[править | править код]
  • Неполярные: глицин, аланин, валин, изолейцин, лейцин, пролин
  • Полярные незаряженные (заряды скомпенсированы) при pH=7: серин, треонин, цистеин, метионин, аспарагин, глутамин
  • Ароматические: фенилаланин, триптофан, тирозин
  • Полярные заряженные отрицательно при pH=7: аспартат, глутамат
  • Полярные заряженные положительно при pH=7: лизин, аргинин, гистидин[16]
По функциональным группам[править | править код]
  • Алифатические
    • Моноаминомонокарбоновые: глицин, аланин, валин, изолейцин, лейцин
    • Оксимоноаминокарбоновые: серин, треонин
    • Моноаминодикарбоновые: аспартат, глутамат, за счёт второй карбоксильной группы несут в растворе отрицательный заряд
    • Амиды моноаминодикарбоновых: аспарагин, глутамин
    • Диаминомонокарбоновые: лизин, аргинин, несут в растворе положительный заряд
    • Серосодержащие: цистеин, метионин
  • Ароматические: фенилаланин, тирозин, триптофан,
  • Гетероциклические: триптофан, гистидин, пролин
  • Иминокислоты: пролин
По классам аминоацил-тРНК-синтетаз[править | править код]
  • Класс I: валин, изолейцин, лейцин, цистеин, метионин, глутамат, глутамин, аргинин, тирозин, триптофан
  • Класс II: глицин, аланин, пролин, серин, треонин, аспартат, аспарагин, гистидин, фенилаланин

Для аминокислоты лизин существуют аминоацил-тРНК-синтетазы обоих классов.

По путям биосинтеза[править | править код]

Пути биосинтеза протеиногенных аминокислот разноплановы. Одна и та же аминокислота может образовываться разными путями. К тому же совершенно различные пути могут иметь очень похожие этапы. Тем не менее, имеют место и оправданы попытки классифицировать аминокислоты по путям их биосинтеза. Существует представление о следующих биосинтетических семействах аминокислот: аспартата, глутамата, серина, пирувата и пентоз. Не всегда конкретную аминокислоту можно однозначно отнести к определённому семейству; делаются поправки для конкретных организмов и учитывая преобладающий путь. По семействам аминокислоты обычно распределяют следующим образом:

  • Семейство аспартата: аспартат, аспарагин, треонин, изолейцин, метионин, лизин.
  • Семейство глутамата: глутамат, глутамин, аргинин, пролин.
  • Семейство пирувата: аланин, валин, лейцин.
  • Семейство серина: серин, цистеин, глицин.
  • Семейство пентоз: гистидин, фенилаланин, тирозин, триптофан.

Фенилаланин, тирозин, триптофан иногда выделяют в семейство шикимата.

По способности организма синтезировать из предшественников[править | править код]
  • Незаменимые
    Для большинства животных и человека незаменимыми аминокислотами являются: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.
  • Заменимые
    Для большинства животных и человека заменимыми аминокислотами являются: глицин, аланин, пролин, серин, цистеин, аспартат, аспарагин, глутамат, глутамин, тирозин.

Классификация аминокислот на заменимые и незаменимые не лишена недостатков. К примеру, тирозин является заменимой аминокислотой только при условии достаточного поступления фенилаланина. Для больных фенилкетонурией тирозин становится незаменимой аминокислотой. Аргинин синтезируется в организме человека и считается заменимой аминокислотой, но в связи с некоторыми особенностями его метаболизма при определённых физиологических состояниях организма может быть приравнен к незаменимым. Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.

По характеру катаболизма у животных[править | править код]

Биодеградация аминокислот может идти разными путями.

По характеру продуктов катаболизма у животных протеиногенные аминокислоты делят на три группы:

Аминокислоты:

  • Глюкогенные: глицин, аланин, валин, пролин, серин, треонин, цистеин, метионин, аспартат, аспарагин, глутамат, глутамин, аргинин, гистидин.
  • Кетогенные: лейцин, лизин.
  • Глюко-кетогенные (смешанные): изолейцин, фенилаланин, тирозин, триптофан.

«Миллеровские» аминокислоты[править | править код]

«Миллеровские» аминокислоты — обобщенное название аминокислот, получающихся в условиях, близких к эксперименту Стенли Л. Миллера 1953 года. Установлено образование в виде рацемата множества различных аминокислот, в том числе: глицин, аланин, валин, изолейцин, лейцин, пролин, серин, треонин, аспартат, глутамат

В медицине ряд веществ, способных выполнять некоторые биологические функции аминокислот, также (хотя и не совсем верно) называют аминокислотами:

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона, энанта.[19]

Аминокислоты входят в состав спортивного питания и комбикорма. Аминокислоты применяются в пищевой промышленности в качестве вкусовых добавок, например, натриевая соль глутаминовой кислоты.[20]

  1. 1 2 Wagner I., Musso H. New Naturally Occurring Amino Acids (нем.) // Angewandte Chemie International Edition in English : magazin. — 1983. — November (Bd. 22, Nr. 11). — S. 816—828. — DOI:10.1002/anie.198308161.
  2. ↑ Овчинников Ю. А. «Биоорганическая химия» М:Просвещение, 1987. — 815 с., стр. 25.
  3. Карпов В. Л. От чего зависит судьба гена (рус.) // Природа. — Наука, 2005. — № 3. — С. 34—43.
  4. Helfman, P M; J L Bada. Aspartic acid racemization in tooth enamel from living humans (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1975. — Vol. 72, no. 8. — P. 2891 —2894.
  5. CLOOS P; FLEDELIUS C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential (неопр.) (1 февраля 2000). Дата обращения 5 сентября 2011. Архивировано 2 февраля 2012 года.
  6. J. van Heijenoort. Formation of the glycan chains in the synthesis of bacterial peptidoglycan // Glycobiology. — 2001-3. — Т. 11, вып. 3. — С. 25R—36R. — ISSN 0959-6658.
  7. Herman Wolosker, Elena Dumin, Livia Balan, Veronika N. Foltyn. D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration // The FEBS journal. — 2008-7. — Т. 275, вып. 14. — С. 3514—3526. — ISSN 1742-464X. — DOI:10.1111/j.1742-4658.2008.06515.x.
  8. H. Brötz, M. Josten, I. Wiedemann, U. Schneider, F. Götz. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics // Molecular Microbiology. — 1998-10. — Т. 30, вып. 2. — С. 317—327. — ISSN 0950-382X.
  9. Linda Johansson, Guro Gafvelin, Elias S.J. Arnér. Selenocysteine in proteins—properties and biotechnological use // Biochimica et Biophysica Acta (BBA) - General Subjects. — 2005-10. — Т. 1726, вып. 1. — С. 1—13. — ISSN 0304-4165. — DOI:10.1016/j.bbagen.2005.05.010.
  10. Joseph A. Krzycki. The direct genetic encoding of pyrrolysine // Current Opinion in Microbiology. — 2005-12. — Т. 8, вып. 6. — С. 706—712. — ISSN 1369-5274. — DOI:10.1016/j.mib.2005.10.009.
  11. Alexandre Ambrogelly, Sotiria Palioura, Dieter Söll. Natural expansion of the genetic code // Nature Chemical Biology. — 2007-1. — Т. 3, вып. 1. — С. 29—35. — ISSN 1552-4450. — DOI:10.1038/nchembio847.
  12. Andrei S. Rodin, Eörs Szathmáry, Sergei N. Rodin. On origin of genetic code and tRNA before translation // Biology Direct. — 2011-02-22. — Т. 6. — С. 14. — ISSN 1745-6150. — DOI:10.1186/1745-6150-6-14.
  13. Burtyka M.V. Биометрия: метрика молекулярного углеродистого многообразия.CTAG biometry=http://biometry-burtyka.blogspot.com.
  14. 1 2 Cooper, Geoffrey M. The cell : a molecular approach. — 3rd ed. — Washington, D.C.: ASM Press, 2004. — xx, 713 pages с. — ISBN 0878932143, 9780878932146, 0878930760, 9780878930760.
  15. Р. Б. Соловьев, учитель биологии. Несколько мнемонических правил
  16. 1 2 Березов Т.Т., Коровкин Б.Ф. Классификация аминокислот // Биологическая химия. — 3-е изд., перераб. и доп.. — М.: Медицина, 1998. — 704 с. — ISBN 5-225-02709-1.

список, роль в организме и содержание в продуктах

Содержание[показать]

Организм человека во многом состоит из белков. Эти сложные молекулы входят в состав клеточных мембран, формируют антитела и волокна мышц, а также отвечают за множество функций. Для того, чтобы белок всегда был в достаточном количестве, необходимы его структурные элементы – аминокислоты незаменимые.

Незаменимые аминокислоты в организме

Аимнокислоты представляют собой функциональные единицы, из которых организм строит собственный белок. Когда пища попадет в пищеварительную систему, она распадается до мельчайших частиц, в частности, белки до пептидов, а затем до аминокислот, которые всасываются в кровь и перемещаются по организму.

Общая структура аминокислотыОбщая структура аминокислоты

Общая структура аминокислоты. Фото: yandex.ru

Наш организм усваивает далеко не все вещества, которые всосались, часть может быть потрачена на получение энергии или преобразование в другой тип веществ, но значительная доля идет на создание собственного белка. И здесь у организма есть запасная площадка, некоторые аминокислоты он вполне может создавать сам из того материала, который уже поступил, а вот некоторые, наоборот, синтезировать не может. Такие аминокислоты незаменимы для человека. Если их нет, белки не могут структурироваться, соответственно, перестают выполняться определенные биохимические процессы. Если это продолжается долго, то наступает расстройство, приводящее к различным заболеваниям.

Список незаменимых аминокислот

  1. Лейцин имеет важное значение для синтеза белков, входящих в состав мышечной ткани. Помогает заживлять раны и регулировать показатель глюкозы в крови;
  2. Изолейцин содержится в большом количестве в мышечной ткани, поддерживая обмен веществ в ней. Участвует в выработке гемоглобина, поддержании иммунитета и энергетического обмена;
  3. Валин имеет разветвленную цепь, участвует в выработки энергии и воспроизводства мышечной ткани;
  4. Треонин входит состав соединительных белков коллагена и эластина, участвует в обмене жиров и иммунной реакции организма;
  5. Триптофан выступает в качестве предшественника серотонина, регулирующего сон и аппетит, регулирует обмен азота;
  6. Метионин участвует в процессах роста и усвоении цинка и селена, он принимает участие в обмене веществ и устранения последствий интоксикации организма;
  7. Фенилаланин – это предшественник нескольких гормонов: адреналина, норадреналина, тирозина, допамина. Участвует не только в производстве белков и ферментов, но и в создании других аминокислот;
  8. Лизин необходим для усвоения кальция и выработки коллагена и эластина. Он участвует в синтезе многих ферментов и гормонов, регулирует энергетический обмен;
  9. Гистидин является основой для производства гистамина, необходимого для регулирования циклов сна и бодрствования, половой функции и выработки миелиновой оболочки нервных клеток.

В чем отличие незаменимых аминокислот от заменимых

Чем отличаются заменимые и незаменимые аминокислоты? По функциональному строения почти ничем. И в тех и в других радикалы весьма разнообразны. Основная разница заключается в том, что незаменимые аминокислоты синтезироваться нашим организмом не могут, поэтому обязательно должны поступать с пищей. Так, нехватка приводит к тому, что:

  • Человек чувствует себя вялым и уставшим;
  • Нарушается режим сна и бодрствования;
  • Снижается иммунитет, любая инфекция «прицепляется» сразу;
  • Появляются симптомы анемии;
  • Начинают выпадать волосы;
  • Снижается работоспособность как в физическом, так и в умственном плане.

Суточная норма

Потребность в различных веществах, в том числе и в аминокислотах, у нашего организма зависит от нескольких факторов:

  • возраста;
  • пола;
  • уровня физической и психической нагрузки;
  • состояния здоровья и прочего.
Суточная норма незаменимых аминокислотСуточная норма незаменимых аминокислот

Суточная норма незаменимых аминокислот. Фото: takzdorovo-ru.livejournal.com

Рассмотрим суточную потребность в незаменимых аминокислотах для взрослого человека, имеющего вес примерно 60 килограмм:

  • триптофана – 1 г;
  • лейцина – 5 г;
  • треонина – 2,5 г;
  • валина– 3,5 г;
  • лизина – 4 г;
  • изолейцина– 3,5 г;
  • метионина – 3 г;
  • фенилаланина– 3 г.

Для детей необходимы также гистидин и аргинин, они не способны синтезироваться у малышей, поэтому должны поступать с пищей. В дальнейшем их печень сможет создавать эти незаменимые аминокислоты из заменимых.

В каких продуктах содержатся незаменимые аминокислоты

Основным источником незаменимых аминокислоты является белок, преимущественно животного происхождения. Это мясо, рыба, яйца и молоко. Кроме того, белки включающие незаменимые аминокислоты содержатся и в растительной пище. Наиболее богаты ими:

  • Соя и все бобовые;
  • Все виды орехов;
  • Многие злаки, в том числе овес;
  • Финики;
  • Грибы и прочее.
Таблица 1 - Незаменимые аминокислоты в продуктахТаблица 1 - Незаменимые аминокислоты в продуктах

Таблица 1 — Незаменимые аминокислоты в продуктах. Фото: yandex.ru

Если говорить о том, какие продукты содержат больше незаменимых аминокислот, то предпочтение все-таки лучше отдавать мясным и молочным изделиям, так как в них белок содержится в большом количестве и является полноценным, то есть в его состав входит большое количество разных аминокислот, в том числе много незаменимых. Если человеку нельзя употреблять много жирной пищи, то стоит выбирать нежирные сорта мяса и рыба, а в молочной продукции предпочитать кисломолочное и нежирные сорта сыра. По каждому отдельному виду можно найти таблицу содержания незаменимых аминокислот в продуктах питания.

Незаменимые аминокислоты и их источники

Основную массу заменимых и незаменимых аминокислот мы получаем из биохимии продуктов. При правильном питании, поступление веществ будет достаточным и даже с избытком, который легко утилизируется организмом. При повышенных нагрузках потребность в данной группе веществ увеличивается, что должно компенсироваться питанием. Однако, это не всегда удается и например спортсменам, желающим получить быстрый рост мышечной массы нужно дополнительное количество белка. Это означает, что они должны в день съедать несколько яиц, большое количество мяса и молока. В реальности это плохо отражается на работе печени. Но компенсировать недостаток аминокислот можно с помощью специальных препаратов. В основном это спортивное питание, представляющее собой концентрат белков и аминокислот, которые можно принимать в виде белкового коктейля. Содержание в них белковых молекул таково, что получить это количество из пищи просто невозможно, а один стакан позволяет восполнить большие потери.

Однако, стоит помнить, что подобные вещества хоть и относятся к БАДам и спортивному питанию, не должны приниматься необдуманно, это может привести к неприятным последствиям. Поэтому перед началам принятия стоит проконсультироваться с терапевтом и тренером.

Компенсация незаменимых аминокислот

Разобравшись, какие аминокислоты являются незаменимыми и где их можно взять, нужно изучить вопрос их компенсации. Организм человека устроен таким образом, что он подстраивается под условия среды, так и недостаток незаменимых аминокислот может частично компенсироваться. Например, при нехватке фенилаланина в белки встраивается тирозин, а при недостатке метионина – гомоцистеин, аргинин же компенсируется за счет глутаминовой кислоты.

Условно незаменимые аминокислоты

Помимо незаменимых существуют и условно незаменимые аминокислоты. Это группа веществ, которые могут вырабатываться нашим организмом самостоятельно, но только при условии, что некоторое их количество поступает с пищей. К условно незаменимым относят:

  • Аргинин, участвующий в очищении печени и регулировании роста мышечной массы;
  • Гистидин, оказывающий влияние на выработку белых и красных кровяных телец, а также на рост мышц;
  • Цистин, входящий в состав соединительной ткани;
  • Тирозин, частично заменяющий фенилаланин при синтезе белков, и предотвращающий стрессы.

Незаменимые аминокислоты и вегетарианство

Присутствие незаменимых аминокислот в растительной пище доказано, они входят в состав растительных белков и оказывают влияние на деятельность организма. Однако, процентное содержание их в белках низкое, поэтому для полноценного питания необходимо получать большее количество белка. Для людей, придерживающихся вегетарианства это может стать проблемой, особенно для тех, кто полностью исключает животную пищу. При употреблении яиц и молока вопрос с поступлением аминокислот решается легко, нужно только составить меню таким образом, чтобы с едой поступало остаточное количество животного белка.

Содержание аминокислот в белкеСодержание аминокислот в белке

Содержание аминокислот в белке. Фото: noinventamosnadanuevo.com

При строгом соблюдении строгого вегетарианства, полностью исключающего продукты животного происхождения, решить вопрос сложнее. Но при грамотном подходе и его можно решить, если составить свой рацион таким образом, чтобы все необходимые вещества поступали с пищей. Употреблять орехи, злаки, бобовые. В магазинах сегодня присутствует большое количество продуктов из сои по вкусу и внешнему виду напоминающих мясо.

Однако, детям до 16-18 лет придерживаться строго вегетарианства не следует, им компенсировать недостаток данных веществ гораздо сложнее, что может сказаться на общем развитии организма. Питание – важный способ получения необходимых организму веществ. По большому счету все 20 аминокислот незаменимые. Они должны поступать вместе с едой, просто нехватка одних отразится в меньшей степени на здоровье, чем недостаток других.

что это такое, полезные свойства и как их правильно принимать

Аминокислоты для мышц

© Yulia Furman — stock.adobe.com

Аминокислоты — органические вещества, состоящие из углеводородного скелета и двух дополнительных групп: аминной и карбоксильной. Последние два радикала обусловливают уникальные свойства аминокислот — они могут проявлять свойства как кислот, так и щелочей: первые — за счет карбоксильной группы, вторые — за счет аминогруппы.

Итак, мы выяснили, что такое аминокислоты с точки зрения биохимии. Теперь рассмотрим их влияние на организм и применение в спорте. Для спортсменов аминокислоты важны своим участием в протеиновом обмене. Именно из отдельных аминокислот строятся протеины для роста мышечной массы нашего тела — мышечная, скелетная, печеночная, соединительная ткани. Помимо этого, некоторые аминокислоты напрямую участвуют в обмене веществ. К примеру, аргинин участвует в орнитиновом цикле мочевины — уникальном механизме обезвреживания аммиака, образующегося в печени в процессе переваривания белков.

определение аминокислотопределение аминокислот
  • Из тирозина в коре надпочечников синтезируются катехоламины — адреналин и норадреналин — гормоны, функция которых — поддержание тонуса сердечно сосудистой системы, мгновенная реакция на стрессовую ситуацию.
  • Триптофан — предшественник гормона сна — мелатонина, вырабатывающегося в шишковидном теле головного мозга — эпифизе. При недостатке этой аминокислоты в рационе процесс засыпания усложняется, развивается бессонница и ряд других заболеваний, ею обусловленных.

Перечислять можно долго, однако остановимся на аминокислоте, значение которой особенно велико для спортсменов и людей, умеренно занимающихся спортом.

Для чего нужен глютамин

Глютамин — аминокислота, лимитирующая синтез протеина, из которого состоит наша иммунная ткань — лимфатические узлы и отдельные образования лимфоидной ткани. Значение этой системы переоценить трудно: без должного сопротивления инфекциям ни о каком тренировочном процессе говорить не приходится. Тем более, что каждая тренировка — не важно, профессиональная или любительская — это дозированный стресс для организма.

Стресс — необходимое условие, чтобы сдвинуть с места нашу «точку равновесия», то есть вызвать определенные биохимические и физиологические изменения в организме. Любой стресс — это цепь реакций, мобилизующих тело. В промежуток, характеризующий регресс каскада реакций симпатоадреналовой системы (а именно они и представляют собой стресс), происходит снижение синтеза лимфоидной ткани. По этой причине процесс распада превышает скорость синтеза, а значит, иммунитет ослабевает. Так вот, дополнительный прием глютамина сводит к минимуму этот крайне нежелательный, но неизбежный эффект физической нагрузки

источники глютаминаисточники глютамина

Незаменимые и заменимые аминокислоты

Чтобы понять, для чего нужны незаменимые аминокислоты в спорте, необходимо иметь общие представления о белковом обмене. Потребленные человеком белки на уровне желудочно-кишечного тракта обрабатываются ферментами — веществами, расщепляющими пищу, которую мы употребили.

В частности, белки распадаются сперва до пептидов — отдельных цепочек аминокислот, не имеющих четвертичной пространственной структуры. И уже пептиды распадутся на отдельные аминокислоты. Те, в свою очередь, усваиваются организмом человека. Это значит, что аминокислоты всасываются в кровь и только с этого этапа могут быть использованы в качестве продуктов для синтеза белка тела.

аминокислоты (незаменимые и заменимые)аминокислоты (незаменимые и заменимые)

Забегая вперед скажем, что прием отдельных аминокислот в спорте сокращает этот этап — отдельные аминокислоты будут сразу же всасываться в кровь и процессы синтеза, а также биологический эффект аминокислот наступят быстрее.

Всего существует двадцать аминокислот. Чтобы процесс синтеза белка в теле человека стал возможным в принципе, в рационе человека должен присутствовать полный спектр — все 20 соединений.

Незаменимые

Вот с этого момента и появляется понятие незаменимости. К незаменимым аминокислотам относятся те, которые наше тело не способно синтезировать самостоятельно из других аминокислот. А это значит, что появится им, кроме как из продуктов питания, неоткуда. Таких аминокислот насчитывается 8 плюс 2 частично-заменимые.

Рассмотрим в таблице, в каких продуктах содержится каждая незаменимая аминокислота и какова ее роль в организме человека:

НазваниеВ каких продуктах содержитсяРоль в организме
ЛейцинОрехи, овес, рыба, яйца, курица, чечевицаСнижает содержание сахара в крови
ИзолейцинНут, чечевица, кешью, мясо, соя, рыба, яйца, печень, миндаль, мясоВосстанавливает мышечную ткань
ЛизинАмарант, пшеница, рыба, мясо, большинство молочных продуктовПринимает участие в усвоении кальция
ВалинАрахис, грибы, мясо, бобовые, молочные продукты, многие зерновыеПринимает участие в обменных процессах азота
ФенилаланинГовядина, орехи, творог, молоко, рыба, яйца, разные бобовыеУлучшение памяти
ТреонинЯйца, орехи, бобы, молочные продуктыСинтезирует коллаген
МетионинФасоль, соя, яйца, мясо, рыба, бобовые, чечевицаПринимает участие в защите от радиации
ТриптофанКунжут, овес, бобовые, арахис, кедровые орехи, большинство молочных продуктов, курица, индейка, мясо, рыба, сушенные финикиУлучшает и делает сон глубже
Гистидин (частично-заменимая)Чечевица, соевые бобы, арахис, тунец, лосось, говяжье и куриное филе, свиная вырезкаПринимает участие в противовоспалительных реакциях
Аргинин (частично-заменимая)Йогурт, кунжут, семена тыквы, швейцарский сыр, говядина, свинина, арахисСпособствует росту и восстановлению тканей организма

В достаточном количестве аминокислоты содержатся в животных источниках белка — рыбе, мясе, птице. При отсутствии таковых в рационе весьма целесообразен прием недостающих аминокислот в качестве добавок спортивного питания, что особенно актуально для спортсменов-вегетарианцев.

Основное внимание последним стоит обратить на такие добавки, как ВСАА — смесь лейцина, валина и изолейцина. Именно по этим аминокислотам возможна «просадка» в рационе, не содержащем животных источников белка. Для спортсмена (как профессионала, так и любителя) это абсолютно не допустимо, так как в долгосрочной перспективе приведет к катаболизму со стороны внутренних органов и к заболеваниям последних. В первую очередь страдает от недостатка аминокислот печень.

Спортивное питание аминокислотыСпортивное питание аминокислоты

© conejota — stock.adobe.com

Заменимые

Заменимые аминокислоты и их роль рассмотрим в таблице ниже:

НазваниеРоль в организме
АланинПринимает участие в глюконеогенезе печени
ПролинОтвечает за составление прочной структуры коллагена
ЛевокарнитинПоддерживает кофермент А
ТирозинОтвечает за ферментативную активность
СеринОтвечает за построение природных белков
ГлютаминСинтезирует протеины мышц
ГлицинСнижает напряжение т уменьшает агрессивность
ЦистеинПоложительно влияет на текстуру и состояние кожи
Таурин Оказывает метаболическое действие
Орнитин Принимает участие в биосинтезе мочевины

Что происходит с аминокислотами и протеинами в вашем теле

Аминокислоты, попавшие в кровоток, в первую очередь распределяются по тканям тела, где в них есть наибольшая потребность. Если у вас есть «просадка» по определенным аминокислотам, прием дополнительного количества белка, богатого ими, или прием дополнительных аминокислот, будет особенно полезен.

Синтез белка происходит на клеточном уровне. В каждой клетка есть ядро — самая важная часть клетки. Именно в ней происходит считывание генетической информации и ее воспроизводство. По сути, вся информация о строении клеток закодирована в последовательности аминокислот.

Как выбрать аминокислоты рядовому любителю, умеренно занимающемуся спортом 3-4 раза в неделю? Никак. Они ему просто не нужны.

Более важны для современного человека следующие рекомендации:

  1. Начать питаться регулярно в одно и то же время.
  2. Сбалансировать рацион по белкам жирам и углеводам.
  3. Убрать из рациона фастфуд и некачественную пищу.
  4. Начать употреблять достаточное количество воды — 30 мл на килограмм массы тела.
  5. Отказаться от рафинированного сахара.

Эти элементарные манипуляции принесут гораздо больше, чем добавление в рацион каких бы то ни было добавок. Более того, добавки без соблюдения указанных условий будут абсолютно бесполезны.

Зачем знать, какие аминокислоты вам нужны, если вы питаетесь непонятно чем? Откуда вы знаете, из чего сделаны котлеты в столовой? Или сосиски? Или что за мясо в котлете в бургера? Про начинку для пиццы вообще промолчим.

Поэтому прежде, чем делать вывод о потребности в аминокислотах, нужно начать питаться простыми, чистыми и полезными продуктами и выполнить описанные выше рекомендации.

То же самое касается дополнительного приема белка. Если в вашем рационе присутствует белок, в количестве 1,5- 2 г на килограмм массы тела, никакой дополнительный белок вам не нужен. Лучше потратить деньги на покупку качественных продуктов питания.

Важно также понимать, что протеин и аминокислоты — это не фармакологические препараты! Это всего лишь добавки спортивного питания. И ключевое слово здесь — добавки. Добавляют их по потребности.

Чтобы понять, есть ли потребность, нужно контролировать свое питание. Если вы уже прошли описанные выше шаги и поняли, что добавки все-таки необходимы, первое, что вы должны сделать — пойти в магазин спортивного питания и выбрать соответствующий продукт в соответствии с финансовыми возможностями. Единственное, чего не стоит делать новичкам — это покупать аминокислоты с натуральным вкусом: пить их будет затруднительно по причине чрезвычайной горечи.

Вред, побочные эффекты, противопоказания

Если у вас есть заболевания, характеризующиеся непереносимостью одной из аминокислот, вы об этом знаете с рождения, так же, как и ваши родители. Этой аминокислоты нужно избегать и дальше. Если же этого нет, говорить о вреде и противопоказаниях добавок нет смысла, поскольку это полностью натуральные вещества.

Аминокислоты — составляющая часть белка, белок — привычная часть рациона человека. Все то, что продается в магазинах спортивного питания — не является фармакологическими препаратами! Только дилетанты могут говорить о каком-то вреде и противопоказаниях. По той же причине нет смысла рассматривать такое понятие, как побочные эффекты аминокислот — при умеренному потреблении никаких негативных реакций быть не может.

Трезво подходите к своему рациону и спортивным тренировкам! Будьте здоровы!

Оцените материалМария Ладыгина

Научный консультант проекта. Физиолог (биологический факультет СПБГУ, бакалавриат). Биохимик (биологический факультет СПБГУ, магистратура). Инструктор по хатха-йоге (Институт управления развитием человеческих ресурсов, проект GENERATION YOGA). Научный сотрудник (2013-2015 НИИ акушерства, гинекологии и репродуктологии им. Отта, работа с маркерами женского бесплодия, анализ биологических образцов; 2015-2017 НИИ особо чистых биопрепаратов, разработка лекарственных средств) Автор и научный консультант сайтов по тематике ЗОЖ и науке (в области продления жизни) C 2019 года научный консультант проекта Cross.Expert.

Редакция Cross.Expert

Незаменимые аминокислоты для человека: содержание в продуктах питания

Приветствую читателей блога! Все, что поступает к нам с пищей, распадается на множество молекул. В том числе и на аминокислоты. А 9 из этих органических молекул – незаменимые аминокислоты для человека. Их нехватка грозит нарушением развития, депрессией и другим расстройствам. Разберемся, почему они такие особенные. И где их раздают? 🙂

суточная норма незаменимых аминокислот и где они содержатся

суточная норма незаменимых аминокислот и где они содержатся

Незаменимые аминокислоты

Вместе с пищей к нам в организм попадает белок. Под воздействием пищеварительных ферментов, он распадется на аминокислоты. Есть незаменимые и заменимые аминокислоты. Их можно называть органическими молекулами, соединениями, веществами. Поэтому, употребляя пищу, богатую белком, мы «строим» свой организм.

Заменимые аминокислоты мы можем синтезировать сами. А незаменимые нам приходится брать из пищи, так как у нас нет специального фермента для их образования

Заменимые и незаменимые аминокислоты, таблица:

НезаменимыеЗаменимые
  1. Фенилаланин
  2. Лизин
  3. Треонин
  4. Метионин
  5. Валин
  6. Лейцин
  7. Триптофан
  8. Гистидин
  9. Изолейцин
  1. Аланин
  2. Аргинин
  3. Аспарагин
  4. Глутамат
  5. Глутамин
  6. Карнитин
  7. Глицин
  8. Орнитин
  9. Пролин
  10. Серин
  11. Таурин
  12. Цистеин*
  13. Тирозин*

Есть еще условно незаменимые органические соединения. В таблице я отметила их звездочкой. Они могут синтезироваться в организме. Но в таких микродозах, что в определенных ситуациях (например, травма), нам необходимо принимать их из пищи. Но о них чуть позже.

Давайте сейчас разберемся с незаменимыми строителями. Пусть названия запомнить сложно, но их действие вы точно запомните.

  • Валин восстанавливает мышцы. Отличный источник энергии.
  • Гистидин – улучшает кроветворение. Также помогает восстанавливать мышцы и помогает им расти. Чтобы суставы были здоровы – нужна именно эта аминокислота. Содержится в гемоглобине.
  • Изолейцин – участвует в процессе выработки гемоглобина. Держит сахар в крови под контролем. Повышает энергию человека, помогает повысить выносливость.
  • Лейцин – это наша дополнительная защита. Он участвует в укреплении иммунитета. Выступает в роли стабилизатора состава крови. Содержание сахара повысилось – он его понижает. Если уровень лейкоцитов завышен (воспаление) – он их понижает и задействует резервы организма для сопротивляемости. Эта же органическая молекула повышает нашу энергию.

заменимые и незаменимые аминокислоты таблица названия

заменимые и незаменимые аминокислоты таблица названия
  • Лизин. О, это крайне необходимая нам молекула. Она незаменима, чтобы мы усваивали кальций, что формирует и укрепляет кости. Задействована в формировании – внимание, девушки – коллагена. Улучшает состояние волос. Тут и для мужчин есть приятный эффект – это прекрасный анаболик, он увеличивает мышцы. Кроме всего прочего, он повышает женское либидо и мужскую силу. Ребята, вы поняли, о чем я? 😉
  • Метионин – улучшает пищеварение и работу печени. Отличный помощник в переработке жиров. Облегчает период токсикоза у беременных. Оказывает положительное воздействие на здоровье волос.
  • Треонин – помогает пищеварительной системе и желудочно-кишечному тракту функционировать в нормальном режиме. Стимулирует защитные функции организма (иммунитет), помогает в образовании эластина и коллагена. Для печени – это незаменимый помощник. Треонин не позволяет откладываться жиру в печени.
  • Триптофан – это защитник нашего эмоционального самочувствия. Выработка серотонина (это гормон радости) входит в работу триптофана. На нас она действует как релаксант: нормализует сон, помогает чувствовать себя лучше, поднимая настроение. Стабилизирует аппетит, положительно влияет на работу сердца и состояние артерий.
  • Фенилаланин. Наш мозг использует фенилаланин для синтезирования норадреналина – он нужен, чтобы передавать сигналы от нервных клеток в головной мозг. Немаловажными свойствами этой аминокислоты являются: стабилизация настроения, подавление нездорового аппетита, улучшение памяти, повышение восприимчивости. Фенилаланин помогает утихомирить боль.

На самом деле ученые до сих пор спорят сколько аминокислот являются незаменимыми для человека. Но этот перечень наиболее близок к истине на текущий момент.

В случае недостатка этих веществ, развиваются такие нарушения как снижение веса, ухудшение состояния иммунной системы, функций пищеварения и ЖКТ.

сколько аминокислот являются незаменимыми для человека список

сколько аминокислот являются незаменимыми для человека список

Для тех, кто занимается спортом, нехватка этих химических соединений ухудшает результат тренировок. Также возрастает шанс получить травмы.

Незаменимые аминокислоты для спортсменов

Эти «строители» нужны всем без исключения: растущему, работающему, пожилому организму. Для тренирующихся и тех, кто занимается спортом усиленно, и питание требуется особое.

Основные функции незаменимых «строителей» и их роль в питании при занятиях спортом:

  • рост всего организма;
  • восстановление поврежденных мышц после тренинга;
  • поддержание в норме психического состояния и повышение интеллектуальной деятельности;
  • выработка анаболического гормона;
  • синтезирование белка;
  • торможение катаболизма. От этого поврежденные мышцы восстанавливаются качественно;
  • сжигание ненужных жиров;
  • источники энергии.

Доказано путем научных исследований, что для тренирующихся людей дополнительный прием незаменимых аминокислот исключительно на пользу. Перед тренировкой, во время занятий и после них прием этих веществ повышает образование белка.

Так, тренирующийся человек будет быстрее восстанавливаться и его физические показатели улучшатся.

незаменимые аминокислоты для человека и их роль

незаменимые аминокислоты для человека и их роль

Где содержатся незаменимые аминокислоты

Они в достатке присутствуют в мясе и вообще в еде животного происхождения. В морепродуктах и рыбе тоже их порядочно.

Ученые долгое время полагали – только в продуктах животного происхождения содержатся необходимые для человека компоненты, образующие белок. Думали, что исключительно животные белки могут строить человеческий организм. А вот белок растительного происхождения не может быть таким же полноценным для человека. Сейчас это утверждение опровергнуто. Исследования швейцарских и немецких ученых дали такие результаты — в растительной пище также много белка, который усваивается организмом. Только есть придется немного поболее, чем мяса.

Что кому есть – личный выбор каждого. Вот список, в какой еде искать незаменимые аминокислоты.

Валинэта аминокислота содержится в продуктах животного происхождения, молочной продукции, кисломолочке. Много валина в сое, практически во всех зерновых, грибах и орехах, зародышах пшеницы.
Гистидинзлаки, рис, рожь, орешки (особенно сырые), бобовые, соя. Ешьте пищу животного происхождения, зародыши пшеницы и не будете испытывать недостатка в гистидине.
Изолейцинлюбое мясо, рыба и морепродукты, яйцо куриное, молоко и кисломолочные продукты. Из растительной пищи: орешки – кешью и миндаль, соя, большинство семян, рожь, чечевица, зародыши пшеницы
Лейцинэто мясо, рыба, молочка, все орехи, бурый рис, большинство семян, зародыши пшеницы.
Лизинего много в сыре, особенно твердых сортах. Также он есть во всей животной пище. Вся молочка им богата, пшеница, практически все орешки, бобовые (особенно зеленые бобы).
Метионинмного в молочке и кисломолочке, яйцах куриных, всех зерновых, злаковых, кунжуте, орешках. Бразильский орешек – чемпион по содержанию метионина. Мясо тоже очень богато этой незаменимой аминокислотой.
Треонинвы найдете во всех продуктах животного происхождения. Также достаточно треонина в горохе.
Триптофанлюбое мясо, молочка и кисломолочка, рыба, овес, кунжут, финики, бананы, бобовые.
Фенилаланинсыр, творог, молоко, сушеные грибочки – лисички, соя. Найдете фенилаланин в животной пище – это любое мясо, яйцо куриное, рыбка и морепродукты.

Более подробно о содержании в продуктах как заменимых, так и незаменимых аминокислот читайте в статье про аминокислоты в продуктах питания.

источник аминокислот в растительной пище в мясе

источник аминокислот в растительной пище в мясе

Условно незаменимые аминокислоты

Они так названы из-за того, что сами вырабатываются в организме. Только большую долю мы получаем вместе с продуктами питания.

  1. Тирозин: повышает мыслительные способности, бодрость, понижает уровень стресса. Помогает нам сопротивляться вирусным инфекциям, усиливая иммунитет. Эта органическая молекула есть во всех продуктах животного происхождения. В растительной пище тирозин есть в рисе, листовых овощах, арахисе.
  2. Цистеин: выводит токсины. Источники: мясо, рыба, соя, лук, ростки пшеницы, красный перец, яичный желток, овес.

Суточная норма незаменимых аминокислот

Напишу о том, какое количество в граммах нужно человеку, чтобы не было дефицита незаменимых аминокислот. Норма указана из расчета, что человек весит 60 кг или близко к этому весу.

Если ваш вес 60 +/- пара — тройка килограмм, то суточная норма гистидина – 2,1 г. Аминокислота валин в таком случае – 3,5 г. Лейцина нужно будет 5 г. Органическая молекула лизин: для вас норма – 4 г. Изолейцина вам необходимо в сутки – 3,5 г. Незаменимое химическое соединение метионин – 3 г. Триптофана и треонина нужно по 2,5 г каждого. Фенилаланин – норма 3 г.

незаменимые аминокислоты в продуктах

незаменимые аминокислоты в продуктах

Что делать, если незаменимых аминокислот не хватает

Нехватка этих веществ может быть в том случае, если вы питаетесь сплошным фастфудом. Да и то, это надо постараться. Другое дело, если вы активно тренируетесь. Тогда вам дополнительный прием препаратов, содержащих полезные вещества, просто необходим.

А чтобы мышцы быстро восстанавливались, существует специальное спортивное питание. Это грамотно разработанные препараты. Приобрести их можно в специализированных магазинах. Подробно об этом читайте в статье Для чего нужны аминокислоты при тренировках.

Для тех, кто усиленно занимается силовым спортом, обычного питания недостаточно. Поэтому спортивное питание нужно купить обязательно. Купить это питание можно, хорошо изучив состав и свойства продукта. Сейчас и отечественный производитель выпускает отличный товар. И баланс цена-качество не уступает иностранным производителям. Такие продукты можно встретить и в аптеке тоже. Но лучше все же приобрести в специальном магазине.

Симптомы нехватки незаменимых аминокислот

  • понизится аппетит;
  • вы будете чувствовать себя разбитыми, вялыми, сонными;
  • будут наблюдаться симптомы анемии – головокружение, потемнение в глазах, обмороки;
  • понизится сопротивляемость организма инфекциям;
  • начнут заметно выпадать волосы.

Постановкой диагноза и подбором лечения самостоятельно заниматься не нужно. Лучше сходить к врачу.

Недостаток этих крайне полезных веществ – страшное дело. Ешьте то, где они содержатся и все будет о’кей. Переизбыток незаменимых аминокислот тоже неприятная штука. Слишком большое содержание этих веществ в организме чревато нарушением работы щитовидки, проблемы с суставами, нарушение работы сердечно-сосудистой системы и головного мозга.

Кушайте качественную и полезную пищу

  1. Включайте в рацион молочную и кисломолочную еду.
  2. Отваривайте, тушите, запекайте или готовьте на пару мясо и рыбу. Ешьте их с овощами и свежей зеленью.
  3. Делайте перекусы из орешков, семян – 50 г в сутки достаточно. Так же в течение дня съедайте свежие ягоды, овощи и фрукты – только по сезону. Зимой кушайте сухофрукты и заморозки.
  4. Бобовые, зерновые и злаковые употребляйте с овощами и зеленью.

препараты в аптеке купить

препараты в аптеке купить

Если ваше меню приблизительно такое, то вы в безопасности. Друзья! Если вы узнали что-то новое, интересное, то поделитесь этим в соцсетях. И не забудьте подписаться на обновления блога. А я буду продолжать разбирать тему здорового и полезного питания. До скорого!

С уважением, Ольга Сологуб

Незаменимые аминокислоты, где содержатся незаменимые аминокислоты. 8 незаменимых аминокислот

В современном обществе, которое руководимо методом бесструктурного управления по эгрегориально-матричному принципу, очень сложно найти истину среди транслируемой лжи. Чтобы максимально усложнить поиск истины для тех, кто не желает жить в ментальном рабстве, придуман один интересный приём: в обществе намеренно создаются две версии лжи, которые лишь на первый взгляд являются противоположными по своему содержанию. На самом деле они призваны занять позиции «лжи» и «правды» и тем самым скрыть настоящую истину. Один из ярких примеров такой уловки — миф о том, что организму необходим белок.

Когда человек принял решение отказаться от мясных продуктов или же вовсе от продуктов животного происхождения, он неизбежно столкнётся с мифом о необходимости белка, более того, будет сталкиваться с ним регулярно, отвечая на замечания других людей о том, что он якобы негармонично питается. Однако сегодня уже широко распространена информация о том, что белок организму вовсе не нужен, а нужны 20 аминокислот, из которых организм и синтезирует белок. К счастью, сегодня в миф о необходимости животного белка верит всё меньше и меньше людей. Ведь совершенно очевидно, что белок, из которого построено тело свиньи, коровы или курицы, совершенно не подходит для построения клеток человека, и такой белок в любом случае является для нас чужеродным.

Что же происходит в организме человека, когда в него попадает чужеродный белок? Организм прикладывает титанические усилия, чтобы разложить его на базовые составляющие — аминокислоты — и уже из них синтезировать собственный белок. И процесс этот, во-первых, энергоёмкий, а во-вторых, в процессе разложения чужеродного белка образуются токсичные вещества. Особенно вредные и опасные токсины образуются в процессе разложения животного белка.

полезное питание

Однако если с вопросом необходимости белка всё понятно, то с аминокислотами вопросов остаётся много. И здесь вступает в игру вторая версия лжи на тему необходимости мяса: дескать, белок-то нам не нужен, но вот среди аминокислот есть незаменимые, то есть те, которые нигде, кроме как из мяса, взять нельзя. Таким образом, результат мы получаем прежний: миф о белке разрушен, но от мяса, выходит, отказываться нельзя. И казалось бы, до «правды» мы докопались, только эта правда ровным счётом ничего не меняет и снова служит интересам мясоперерабатывающей промышленности. И здесь важно разрушить ещё один миф о том, что незаменимые аминокислоты нельзя взять нигде, кроме пищи животного происхождения.

Незаменимые аминокислоты для человека: список

Миф о невозможности получить незаменимые аминокислоты из растительной пищи не выдерживает никакой критики. Этот миф можно разнести в пух и прах простым аргументом: в мире есть тысячи и сотни тысяч живых существ, которые никогда в своей жизни не употребили ни грамма мясной пищи — откуда же они берут незаменимые аминокислоты? И если предположить, что, к примеру, в мясе курицы содержатся эти незаменимые аминокислоты, то возникает вопрос, откуда же бедная курочка их берёт? Неужели втихаря поедает мясо?

Любому школьнику известно, что курица питается растительной пищей. Из этого можно сделать два возможных вывода, каждый из которых разрушает миф о необходимости употребления мяса в качестве источника незаменимых аминокислот.

  • Курица получает незаменимые аминокислоты из растительной пищи. Значит, то же самое доступно и человеку.
  • Курица не получает незаменимые аминокислоты из растительной пищи. Значит, в её мясе они не содержатся и источником незаменимых аминокислот мясо быть не может.

Наиболее вероятным и логичным является первый вариант, так как в природе всё продумано и гармонично, да и без полного списка аминокислот травоядные не смогли бы полноценно жить. Поэтому совершенно очевидно, что все незаменимые аминокислоты можно получить из растительной пищи.

фрукты, овощи

Почему, собственно, аминокислоты называют «незаменимыми»? Дело в том, что из 20 аминокислот, которые участвуют в синтезе белка, организм способен сам вырабатывать одиннадцать, а девять должен получать извне. Есть разные мнения относительно незаменимых аминокислот. Одни источники говорят, что их восемь, другие настаивают на том, что их девять. Почему такие разногласия и сколько их на самом деле? Дело в том, что действительно незаменимых аминокислот только восемь, а девятая — гистидин — незаменима только для детского организма, а во взрослом прекрасно синтезируется самостоятельно. Незаменимой для детей аминокислотой является и аргинин, который в организме взрослого человека также синтезируется. Поэтому ответ на вопрос «сколько незаменимых аминокислот для взрослого человека?» очевиден: их восемь.

Итак, существует 8 незаменимых аминокислот, которые организм не может синтезировать сам:

  • валин;
  • изолейцин;
  • лейцин;
  • лизин;
  • метионин;
  • треонин;
  • триптофан;
  • фенилаланин.

Где содержатся незаменимые аминокислоты

Как уже сказано выше, миф о наличии незаменимых аминокислот только в животной пище — это именно миф, активно продвигаемый пищевыми корпорациями и владельцами мясоперерабатывающей промышленности. И этот миф, к сожалению, пришёл на смену развенчанному и поверженному мифу о необходимости чужеродного белка для построения клеток человека. Однако и он уже пошатнулся. В интернете можно найти достаточно информации о том, в каких растительных продуктах содержатся все восемь незаменимых аминокислот.

полезные продукты
  • В первую очередь, незаменимыми аминокислотами богаты бобовые — горох, чечевица, нут, арахис и т. д. Однако стоит отметить, что арахис крайне нежелателен для употребления. С целью обезопасить растение и плоды от поедания вредителями в процессе выращивания арахис скрещивают с генами петунии, и такой арахис крайне губителен для печени. И по статистике на рынке стран СНГ такого генетически модифицированного арахиса больше 90 %. Однако, даже если арахис не модифицирован, при неправильных условиях хранения на нём образуется очень опасная плесень, которая приводит к раковым заболеваниям. Также арахис закисляет наш организм, что крайне вредно.
  • Аминокислотами богаты орехи, семена и злаки. Особенно полезными будут семена подсолнечника, тыквы и кунжут. А среди злаков — овёс и нешлифованный (это важно!) рис. Среди орехов больше всего аминокислот содержат миндаль, кешью и грецкий орех.

Таким образом, полный список незаменимых аминокислот можно получить даже при исключении из рациона всех продуктов животного происхождения. Миф о дефиците незаменимых аминокислот на вегетарианской и веганской диетах — это не более чем «пугалка» для тех, кто решил перейти на здоровое, этическое питание. Мясная индустрия не может допустить массового оттока своих потребителей, поэтому сочиняет всё новые и новые мифы, чтобы заставить людей потреблять вредные для здоровья и окружающей среды продукты, на которых заинтересованные продавцы делают огромные деньги.

полезные продукты

Отправить ответ

avatar
  Подписаться  
Уведомление о