Влияние висмута на организм и жизнь человека
Реферат
Выполнила студентка V курса 1 группы фармацевтического факультета Болюбаш Ирина
Одесский национальный медицинский университет
г. Одесса – 2011
Висмут (лат. Bismuthum) – химический элемент V группы периодической системы Менделеева с атомным номером 83. Висмут это хрупкий, легкоплавкий металл серебристо-белого цвета с розовым оттенком. Он устойчив к действию кислорода и воды и растворим в концентрированной серной кислоте. При комнатной температуре висмут легко раскалывается по плоскостям спайности, в фарфоровой ступке растирается в порошок. Он обладает диамагнитностью, плохой теплопроводностью, низкой температурой плавления (271, 4 оС), высокой температурой кипения (1560 °С) и способностью расширяться в объеме при затвердевании. При нагревании выше 1000° С сгорает голубоватым пламенем с образованием оксида Bi2O3. Он характеризуется преобладанием металлических свойств над неметаллическими и может рассматриваться как металл. Стержень из металлического висмута диаметром в 2 мм разрывается при нагрузке всего в 14 килограммов. При температуре 120—150 °С висмут становится ковким, горячим прессованием (при 240—250 °С) из него можно изготовить проволоку диаметром до 0, 1 мм, а также пластинки толщиной 0, 2—0, 3 мм. Расплавленный висмут разрывает после застывания стеклянную трубку, в которую был влит. В периодической системе висмут — последний стабильный (не радиоактивный) элемент. Но по некоторым данным, 209Bi слабо радиоактивен, его период полураспада столь велик (около 2 * 1018 лет), что этот нуклид можно считать стабильным. Это примерно в полмиллиарда раз больше возраста нашей планеты…
Происхождение названия
Висмут известен со средневековья (впервые упомянут в письменных источниках в 1450 году как Wismutton или Bisemutum). Первые сведения о висмуте появились в начале XVI в. в трудах минералога и металлурга Георга Бауэра (Агриколы). Однако до XVIII века его считали разновидностью свинца, олова или сурьмы. Лишь в 1753 француз Клод высказал мнение, что это отдельный элемент. Эту точку зрения подтвердил в 1793 г. Потт описавший свойства висмута и установивший самостоятельность элемента висмута. Окончательно как элемент он был открыт в 1799 г. шведским химиком Т. Бергманом.
О происхождении самого слова «висмут» ведется немало споров, существует множество версий. Одни ученые (тот же Липпман) считают, что в основе его лежат немецкие корни «wis» и «mat» (искаженно weisse masse и weisse materia) — белый металл (точнее, белая масса, белая материя). Другие уверены, что название произошло от немецких слов «wiese» (луг) и «muten» (разрабатывать рудник), поскольку этот металл еще в древние времена добывали в лугах Саксонии, близ Мейсена. Третьи утверждают, что висмутовыми рудами был богат округ Визен в Германии — ему, мол, и обязан металл названием. Есть ещё мнение что слово «висмут» — не что иное, как арабское «би исмид», то есть «похожий на сурьму». Трудно отдать предпочтение какой-нибудь из этих версий, по этой причине до сих пор ученые до конца не определились с происхождением названия восемьдесят третьего элемента.
Нынешний символ элемента номер восемьдесят три — Bi — впервые введен в химическую номенклатуру в 1819 году выдающимся шведским химиком Йенсом Яковом Берцелиусом.
Известный металлург и минералог средневековья Георг Агрикола в своей книге «О месторождениях и рудниках в старое и новое время», написанной в 1546 году, возвел висмут в ранг одного из основных металлов великолепной семерки» — золоту, серебру, меди, железу, свинцу, олову и ртути. Однако окончательно «права гражданства» висмут обрел лишь в XVIII веке. Этому металлу, пожалуй, как ни одному другому химическому элементу, повезло с названиями: по подсчетам некоторых ученых, в литературе XV-XVIII веков можно встретить более 20 «псевдонимов» висмута и среди них такие выразительные, как демогоргон, глаура, нимфа, стекловатое (хрупкое) олово, серое олово. В начале XIX века висмут в России называли иногда визмутом и бисмутом.
Нахождение в природе
Висмут — малораспространенный элемент. Его кларк (содержание в земной коре по массе) составляет 2х10-5% и по этому показателю он близок к серебру. Висмут встречается в природе в виде многочисленных минералов в основном гидротермального происхождения, главные из которых: висмутин, висмут самородный, бисмит, тетрадимит и пр. Эти минералы рассеяны и встречаются как примеси в свинцово-цинковых, медных, молибденово-кобальтовых и олово-вольфрамовых рудах (поэтому и добывается висмут как побочный продукт переработки полиметаллических руд). Содержание висмута в земной коре 2×10−5 % по массе, в морской воде — 2×10−5 мг/л (71-е место среди всех элементов).
Месторождения: Известны месторождения висмута в Германии, Монголии, Боливии, Австралии, Перу и других странах.
Мировая добыча, потребление и стоимость висмута
Висмут — достаточно редкий металл, и его мировая добыча/потребление едва превышает 6000 тонн в год (от 5800 до 6400 тонн в год).
Стоимость: Цены на висмут чистотой 99 % в 2011 году составили в среднем 23-28 долл/кг.
ВИСМУТ — это… Что такое ВИСМУТ?
ВИСМУТ — (нем.). Металл, отличающийся своей хрупкостью и легкоплавкостью, красновато белого цвета; употребляется для сплавления металлов и приготовления белил, а также в медицине. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… … Словарь иностранных слов русского языка
ВИСМУТ — (символ Bi), серебристо белый металл, элемент пятой группы периодической таблицы, впервые выделенный как отдельный элемент в 1753 г. Основными рудами для его получения являются бисмит (Вi2О3) и висмутовый блеск (Bi2S3). Висмут плохо проводит… … Научно-технический энциклопедический словарь
ВИСМУТ — (Bismuthum), Bi, химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804; металл, tпл 271,4 шC. Висмут компонент легкоплавких сплавов, припоев, баббитов и др., присадка к алюминию, сталям и другим сплавам. Из… … Современная энциклопедия
Висмут — Bi (лат. bismuthum * a. bismuth; н. Wismut; ф. bismuth; и. bismuto), хим. элемент V группы периодич. системы Mенделеева, ат. н. 83, ат. м. 208,980. Природный B. состоит из одного стабильного изотопа 209Bi; из радиоактивных… … Геологическая энциклопедия
ВИСМУТ — (лат. Wismuthum) Bi, химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804. Серебристо белый металл, хрупкий, легкоплавкий; плотность 9,80 г/см³, tпл 271,4 .С. В сухом воздухе устойчив. Минералы висмутин … Большой Энциклопедический словарь
ВИСМУТ — ВИСМУТ, висмута, муж. (иностр.). Хрупкий металл белого цвета с красноватым отливом (хим.). || Порошок или жидкость из соединений этого металла, применяемые в медицине как лечебные средства (апт.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ВИСМУТ — ВИСМУТ, а, муж. Химический элемент хрупкий легкоплавкий серебристо белый металл. | прил. висмутовый, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
ВИСМУТ — муж. один из металлов, невстречаемых в чистом виде и в деле, а только в окисях и солях; легкоплавкий, белый, с красноватым отливом. Висмутовый, к нему относящийся, содержащий его. Висмутовые или шпанские белила. Толковый словарь Даля. В.И. Даль.… … Толковый словарь Даля
ВИСМУТ — металл красновато белого цвета; уд. вес 9,80; темп pa плавления 269°; отличается большой хрупкостью. В соединении с оловом, свинцом и кадмием В. образует сплавы, применяемые в качестве легких припоев и для изготовления легкоплавких… … Технический железнодорожный словарь
висмут
— сущ., кол во синонимов: 4 • зельбит (1) • минерал (5627) • полуметалл (4) • … Словарь синонимовсимптомы и методы лечения, последствия
Категория: Химические отравления
Висмут – серебристый металл, применяемый в металлургической и ядерной промышленности, косметологии. Входит в состав некоторых лекарственных препаратов. В медицине применяется благодаря способностям заживлять раны, оказывать антибактериальное действие.Медикаменты с висмутом в составе используют при лечении болезней органов желудочно-кишечного тракта, злокачественных образований. Однако элемент небезопасен. Как происходит отравление висмутом? Как помочь человеку при интоксикации?
Что такое висмут
Висмут – металл, очень похожий на жидкость. В жидком состоянии имеет более высокую плотность, чем в затвердевшем. Металл обладает прекрасной пластичностью, по физическим свойствам сходен со свинцом. Присутствует в земной коре, морской воде, в руде встречается в чистом виде и в составе солей. Металл используется в различных сферах жизни. Применение:
- В металлургии применяется для создания легкоплавких сплавов.
- Благодаря пластичности, часто используется для создания литых изделий сложной формы, специфических форм.
- На основе висмута и марганца создают магниты, соединения элемента применяют в производстве керамики, стекла.
- В медицине используется как один из компонентов лекарственных средств.
- Соединения висмута используются в косметологии, его добавляют в декоративную косметику.
Таким образом, применение висмута довольно широкое. В косметологии отравления диагностируются редко, чаще интоксикации возникают при приеме лекарств либо при работе с данным веществом.
Влияние висмута на организм
Висмут обладает меньшей токсичностью, нежели другие подобные металлы – свинец, ртуть. При поступлении в организм взрослых и детей вещество оказывает благоприятное действие, помогает справиться с патогенными организмами. Установлено, что препараты на основе висмута одновременно оказывают несколько действий:
- образуют на слизистой желудка защитную пленку и стимулируют выработку естественной слизи;
- помогают избавиться от бактерии Хеликобактер из-за снижения скорости всасывания антибактериальных средств;
- нарушают процессы синтеза в клетках бактерий;
- снимают воспалительный процесс.
Однако, длительное использование подобных лекарственных средств, способно привести к сбою работы внутренних органов. Нарушается работа почек, печени и центральной нервной системы. Поэтому злоупотреблять подобными медикаментами не рекомендуется.
Причины и пути проникновения в организм
Почему возникает передозировка висмутом? Выделяют несколько причин и путей проникновения элемента внутрь. Как проникает:- Вдыхание загрязненного воздуха на производствах. Часто страдают люди, не использующие средства защиты.
- При злоупотреблении косметическими средствами происходит постепенное накопление элемента в организме.
- Нередко зараженной бывает вода, а затем испарения.
- Висмут встречается в большом объеме в мускатном орехе, душистом перце, майоране.
- Элемент присутствует в составе многих лекарственных препаратов.
Нередко происходит отравление препаратами висмута. Однако элемент проникает в организм не только из таблеток. Где именно присутствует данное вещество?
Какие препараты содержат висмут
Медикаменты, содержащие висмут, направлены на избавление от инфекционных заболеваний, спровоцированных разными бактериями. Производятся в сочетании с антибактериальными лекарствами. Висмута нитрат представляет собой порошок белого цвета, обладает местным противовоспалительным и вяжущим действием. Присутствует во многих медикаментах. Лекарства:
- Викалин. Помимо висмута содержит кору крушины и рутин, оказывает вяжущее и антацидное действие.
- Викаир. Используют при язвенных заболеваниях желудка и при гастритах.
- Де-Нол. При приеме внутрь помогает нейтрализовать повышенное количество соляной кислоты. Оказывает благоприятное действие на слизистую оболочку желудка. Назначают при эрозиях в пищеварительном тракте.
- Алцид. Лекарственное средство, помогающее справиться с бактериями Хеликобактер пилори. Применяется в терапии язвенных заболеваний.
Требуется помнить, что данные лекарственные средства отличаются по количеству основного вещества (висмута) в составе. Перед приемом рекомендуется внимательно прочитать инструкцию.
Висмут содержится в небольшом количестве продуктов. Однако его возможно встретить в зелени и разных специях. Висмута много в полыни, шалфее, зеленых водорослях, мяте, зеленом луке. Элемент присутствует в базилике, корице.
Симптомы и причины отравления висмутом
Интоксикация висмутом бывает в хронической и острой форме. Для первого характерно постепенное накопление вредного вещества в организме. На что рекомендуется обратить внимание? Признаки:- нарушение сна;
- повышенная нервозность, раздражительность;
- спазматические проявления;
- ослабевание иммунной системы, постоянная слабость;
- сбои в сердечном ритме, повышение или понижение давления;
- нарушение целостности слизистой оболочки во рту, язвенные образования;
- анемия;
- нарушение работы почек;
- расстройство кишечника;
- тошнота, рвотные позывы.
Острая форма интоксикации проявляется при попадании в организм большого объема вещества в один момент. Симптомы отравления висмутом диагностируются спустя небольшое количество времени.
Симптоматика:
- интенсивная тошнота и рвота;
- плохое самочувствие, боли в голове, лихорадочное состояние;
- аллергические реакции на кожном покрове;
- болезненность в суставах;
- десны приобретают черный оттенок;
- острое нарушение работы почек;
- диарея;
- изменение температуры тела;
- нарушение речевых функций;
- судорожные проявления;
- психические нарушения, сопровождающиеся зрительными и слуховыми галлюцинациями.
Возможно возникновение других симптомов – общий дискомфорт, серьезные дерматиты. При обследовании диагностируется присутствие альбумина в моче, нарушение метаболизма сперматозоидов у мужчин.
Первая помощь и лечение интоксикации
При обнаружении признаков интоксикации висмутом требуется обратиться к медикам. Пострадавшему оказывают первую помощь. Действия:- При попадании висмута внутрь проводят промывание желудка.
- После процедуры пострадавшему дают принять сорбенты – активированный уголь, Полисорб.
- Если после интоксикации прошло больше часа, то разрешается использовать очистительную клизму.
- Если отравление произошло через дыхательные пути, то пациента выводят или выносят на свежий воздух.
- Слизистые оболочки рта и носа тщательно промывают прохладной водой.
Дальнейшее лечение осуществляют в медицинском учреждении под наблюдением врачей. После обследования подбирают необходимые препараты.
Раздражение, ощущение песка в глазах, краснота — лишь небольшие неудобства при нарушенном зрении. Ученые доказали: снижение зрения в 92% случаев заканчивается слепотой.
Crystal Eyes — лучшее средство для восстановления зрения в любом возрасте.
Терапия:
- при необходимости проводят дополнительное промывание желудка;
- назначают слабительные препараты – Сорбитол, цитрат магния;
- используются энтеросорбенты – Энтеросгель, Энтегнин, Лактофильтрум;
- специфический антидот отсутствует, но применение димеркаптола и унитиола дает положительный результат;
- при развитии стоматита рекомендуется использовать 1% раствор ляписа.
Лечение продолжают до полного восстановления здоровья пациента. Длительность зависит от тяжести отравления и иммунной системы человека.
Последствия и профилактика
Последствия отравления тяжелым металлом бывают разные. У человека поражаются почки, страдает нервная система, печень, щитовидная железа. Избежать интоксикации возможно при соблюдении профилактики. Меры профилактики:
- при работе с металлом соблюдают технику безопасности, надевают защитную одежду;
- лекарственные средства с висмутом в составе принимают по назначению и в указанной дозировке;
- медикаменты хранят в местах, недоступных для детей.
Отравление солями висмута представляет опасность для здоровья человека. При обнаружении неприятных признаков обращаются в медицинское учреждение для оказания помощи и подбора лечения.
Видео: Интоксикация тяжелыми металлами
Самородный висмут — Википедия
Материал из Википедии — свободной энциклопедии
Висмут самородный | |
---|---|
Формула | Bi |
Примесь | Fe, As, S, Sb, Te |
Цвет | Красновато-белый, переходящий в кремово-белый; с поверхности радужный розоватый, желтоватый, голубоватый |
Блеск | Металлический |
Прозрачность | Непрозрачный |
Твёрдость | 2—2,5 |
Спайность | Совершенная по {0001} и {1011}, весьма несовершенная по {1014} |
Излом | Неровный |
Плотность | 9,7—9,83 г/см³ |
Сингония | Тригональная |
Медиафайлы на Викискладе |
Саморо́дный ви́смут — минерал из класса самородных элементов. Легко растворяется в азотной кислоте, плавится при 271,3 °C. Обладает сильными диамагнитными свойствами.
Точечная группа | 3m (3 2/m) — Гексагонально-скаленоэдрический |
---|---|
Пространственная группа | R3m (R3 2/m) |
Сингония | Тригональная |
Параметры ячейки | a = 4,55 Å, c = 11,85 Å |
Отношение | a : c = 1 : 2,604 |
Число формульных единиц (Z) | 6 |
Объем элементарной ячейки | V 212,46 ų (рассчитано по параметрам элементарной ячейки) |
Двойникование | Обычно полисинтетическое двойникование |
Тип | анизотропный |
---|---|
Оптическая анизотропия | различимая |
Цвет в отражённом свете | блестящий кремово-белый, в побежалости переходящий в жёлтый |
Плеохроизм | слабый |
Для самородного висмута характерны зернистые агрегаты, отдельные зёрна, скелетные кристаллы и дендритоподобные выделение. Очень редко встречаются кристаллы псевдокубического облика.
Самородный висмут образуется в гидротермальных жилах, где ассоциирует с другими минералами висмута, сурьмы, мышьяка, золота и серебра.
Также синтезируется искусственный висмут. У скелетных синтетических кристаллов хорошо развиты рёбра. Искусственный висмут образует псевдокубические формы со ступенчатыми пустотами вместо граней.
Висмут используется в производстве легкоплавких сплавов с оловом, индием, свинцом, цинком и другими металлами. Также применяется в сварочных пастах для специальных работ, фармацевтике (лекарства от язвы желудка и рака), косметической промышленности (пасты для изготовления губной помады), изготовлении сверхпроводников и аккумуляторов.
Самородный висмут относительно редок. Основные месторождения данного минерала находятся в Австралии, России, Казахстане, Испании (Лос-Педрочес, Кордова). Также встречается в Боливии, Великобритании, Германии и США.
- Дымков Ю. М. Скелетные формы и дендритные текстуры // В кн.: Парагенезис минералов ураноносных жил. М., «Недра», 1985, стр. 62—70.
- Малинко С. В., Дубинчук В. Т., Носенко Н. А. Самородный висмут в датолитовых рудах Дальнегорского борного месторождения // Минерал. ж., 1990, 14, № 1, с. 42—52 (реферат — РЖ «Геология», 1992, 6В213)
- Palache C., Berman H., Frondel C. (1944), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837—1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged, 834pp.: 134—135.
Висмут — это… Что такое Висмут?
Внешний вид простого вещества | |
---|---|
Блестящий серебристый металл | |
Свойства атома | |
Имя, символ, номер | Ви́смут (устар. Би́смут) / Bismuthum (Bi), 83 |
Атомная масса (молярная масса) | 208,98037 а. е. м. (г/моль) |
Электронная конфигурация | [Xe] 4f14 5d10 6s2 6p3 |
Радиус атома | 170 пм |
Химические свойства | |
Ковалентный радиус | 146 пм |
Радиус иона | (+5e) 74 (+3e) 96 пм |
Электроотрицательность | 2,02 (шкала Полинга) |
Электродный потенциал | Bi←Bi3+ 0,23 В |
Степени окисления | 5, 3 |
Энергия ионизации (первый электрон) | 702,9 (7,29) кДж/моль (эВ) |
Термодинамические свойства простого вещества | |
Плотность (при н. у.) | 9,747 г/см³ |
Температура плавления | 271,35 °C, 544,5 K |
Температура кипения | 1883 K |
Теплота плавления | 11,30 кДж/моль |
Теплота испарения | 172,0 кДж/моль |
Молярная теплоёмкость | 26,0[1] Дж/(K·моль) |
Молярный объём | 21,3 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | ромбоэдрическая[2] |
Параметры решётки | a=4,746; α=57,23 Å |
Отношение c/a | — |
Температура Дебая | 120,00 K |
Прочие характеристики | |
Теплопроводность | (300 K) 7,9 Вт/(м·К) |
83 | Висмут |
4f145d106s26p3 |
Ви́смут — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) шестого периода периодической системы химических элементов Д. И. Менделеева; имеет атомный номер 83. Обозначается символом Bi (лат. Bismuthum). Простое вещество представляет собой при нормальных условиях блестящий серебристый металл.
История и происхождение названия
Предположительно латинское Bismuthum или bisemutum происходит от немецкого weisse Masse, «белая масса»[3]. Впервые о висмуте упоминается в трудах минеролога и металлурга Георгия Агриколы в начале XVI века. Однако висмут не был отнесен к самостоятельному элементу и полагали, что он является разновидностью свинца, сурьмы или олова. В 1739 г. немецким химиком Поттом И. Г. было установлено, что висмут является всё-таки отдельным химическим элементом. Через 80 лет шведский химик Берцелиус впервые ввел символ элемента Bi в химическую номенклатуру[4].
Нахождение в природе
Содержание висмута в земной коре 2·10−5 % по массе, в морской воде — 2·10−5 мг/л[1].
В рудах находится как в форме собственных минералов, так и в виде примеси в некоторых сульфидах и сульфосолях других металлов. В мировой практике около 90 % всего добываемого висмута извлекается попутно при металлургической переработке свинцово-цинковых, медных, оловянных руд и концентратов, содержащих сотые и иногда десятые доли процента висмута.
Висмутовые руды, содержащие 1 % и выше висмута, встречаются редко. Минералами висмута, входящими в состав таких руд, а также руд других металлов, являются висмут самородный (содержит 98,5—99 % Bi), висмутин Bi2S3 (81,30 % Bi), тетрадимит Bi2Te2S (56,3—59,3 % Bi), козалит Pb2Bi2S5 (42 % Bi), бисмит Bi2O3 (89,7 % Bi), бисмутит Bi2CO3(OH)4 (88,5—91,5 % Bi), виттихенит Cu3BiS3, галеновисмутит PbBi2S4, айкинит CuPbBiS3.
Генетические группы и промышленные типы месторождений
Висмут в повышенных концентрациях накапливается в месторождениях различных генетических типов: в пегматитах, в контактово-метасоматических, а также в высоко- и среднетемпературных гидротермальных месторождениях. Собственно висмутовые месторождения имеют ограниченное распространение и обычно этот металл образует комплексные руды с другими металлами в ряде рудных формаций гидротермальных месторождений[5]. Среди них выделяются следующие:
- Вольфрам-медно-висмутовые
- Месторождения пятиэлементной формации (Co-Ni-Bi-Ag-U)
- Золото-висмутовые
- Мышьяк-висмутовые
- Медно-висмутовые
- Кварц-висмутовые
Мировая добыча и потребление висмута
Висмут — достаточно редкий металл, и его мировая добыча/потребление едва превышает 6000 тонн в год (от 5800 до 6400 тонн в год).
Месторождения
Известны месторождения висмута в Германии, Монголии, Боливии, Австралии, Перу и других странах[6].
Получение
Синтезированный кристалл висмута. Радужную окраску придаёт оксидная плёнка.Получение висмута основано на переработке полиметаллических медных и свинцовых концентратов и висмутовых руд методами пирометаллургии и гидрометаллургии. Для получения висмута из сульфидных соединений висмута, получаемых при попутной переработке медных концентратов, используют осадительную плавку с железным скрапом и флюсом.
Процесс идет по реакции:
- Bi2S3 + 3Fe = 2Bi + 3FeS
В случае использования окисленных руд, висмут восстанавливают углеродом под слоем лекгоплавкого флюса при температурах 900—1000 °C:
- Bi2O3 + 3C = 2Bi + 3CO↑
Сульфидные руды могут быть переведены в оксидные по реакции:
- 2Bi2S3 + 9O2 = 2Bi2O3 + 6SO2↑
В замен углероду может быть использован сульфит натрия, который восстанавливает оксид висмута при температуре 800 °C по реакции:
- Bi2O3 + 4Na2SO3 = 2Bi + 4Na2O + SO2 + 3SO3
Сульфид висмута может быть восстановлен до висмута с помощью соды при температуре около 950 °C или с помощью гидроксида натрия при температуре 500—600 °C. Реакции этих процессов имеют следующий вид:
- 4Bi2S3 + 12Na2CO3 = 8Bi + 9Na2S + 3Na2SO4 + 12CO2
- 4Bi2S3 + 24NaOH = 8Bi + 9Na2S + 3Na2SO4 + 12H2O
Получение висмута из чернового свинца, который образуется при переработке свинцовых концентратов, состоит в выделении висмута с помощью магния или кальция. При этом висмут скапливается в верхних слоях в виде соединения CaMg2Bi2. Дальнейшая очистка от Ca и Mg происходит при переплаве под слоем щелочи с добавкой окислителя (NaNO3). Полученный продукт подвергают электролизу с получением шлама, который переплавляют в черновой висмут[1].
Гидрометаллургический способ получения висмута характеризуется более высокими экономическими показателями и чистотой полученного продукта при переработке бедных полиметаллических концентратов. В основе способа лежит процесс растворения висмутосодержащих руд, полупродуктов, сплавов азотной и соляной кислотами и последующего выщелачивания образовавшихся растворов. Выщелачивание проводят с помощью серной кислоты или электрохимическим выщелачиванием растворами хлорида натрия. Дальнейшее извлечение и очистка висмута проводится методами экстракции[7].
Получение висмута высокой чистоты основано на методах гидрометаллургического рафинирования, зонной плавки и двухстадийной перегонки.
Физические свойства
Висмут — металл серебристо-белого цвета с розоватым оттенком. Известно большое количество аллотропных модификаций висмута, которые имеют место при высоком давлении. Существует восемь кристаллографических модификаций висмута. При давлении 2,57 ГПа и температуре 25 °C, кристаллическая решетка висмута претерпевает полиморфное превращение из ромбоэдрической в моноклинную с параметрами решетки a = 0,6674 нм, b = 0,6117 нм, c = 0,3304 нм, β = 110,33o, пространственная группа C2m. При давлениях 2,72 ГПа, 4,31 ГПа и около 5 ГПа также происходят полиморфные превращения кристаллической решетки висмута. При давлении 7,74 ГПа висмут имеет кубическую решетку, пространственная группа Im3m с параметром решетки a = 0,3800 нм. В интервале давлений 2,3-5,2 ГПа и температур 500—580 °C висмут имеет тетрагональную решетку с параметрами a = 0,657 нм, c = 0,568 нм. При давлении 30 ГПа также обнаружено полиморфное превращение[1].
Переход висмута из твердого в жидкое состояние сопровождается увеличением плотности с 9,8 г/см3 до 10,07 г/см3, которая постепенно уменьшается с повышением температуры и составляет 9,2 г/см3 при 900 °C. Обратный переход висмута из жидкого в твёрдое состояние сопровождается увеличением объёма на 3,3 %.
Удельное электрическое сопротивление висмута равно 1,2 мкОм·м при 17,5 °C и повышается с ростом температуры. Интересной особенностью является то, что вблизи точки плавления удельное электросопротивление составляет 2,67 мкОм·м при 269 °C, а в жидком состоянии при 272 °C имеет 1,27 мкОм·м.
Температурный коэффициент линейного расширения равен 13,4·10−6 К−1 при 293 К.
По сравнению с другими металлами, висмут, как и ртуть, обладает низкой теплопроводностью равной 7,87 Вт/(м·К) при 300 К.
Висмут является диамагнетиком с магнитной восприимчивостью −1,34·10−9 при 293 K, что делает его самым диамагнитным металлом.
Переходит в сверхпроводящее состояние при температуре 7 К.
При комнатной температуре висмут хрупкий металл и в изломе имеет грубозернистое строение, но при температуре 150—250 °C проявляет пластические свойства.
Модуль упругости: 32-34 ГПа.
Модуль сдвига: 12,4 ГПа[4].
Химические свойства
В соединениях висмут проявляет степени окисления −3, +1, +2, +3, +4, +5. При комнатной температуре в среде сухого воздуха не окисляется, но в среде влажного воздуха покрывается тонкой плёнкой оксида. Нагрев до температуры плавления приводит к окислению висмута, которое заметно интенсифицируется при 500 °C. При достижении температуры выше 1000 °C сгорает с образованием оксида Bi2O3[4]
Взаимодействие озона с висмутом приводит к образованию оксида Bi2O5.
Незначительно растворяет фосфор. Водород в твердом и жидком висмуте практически не растворяется, что свидетельствует о малой активности водорода по отношению к висмуту. Известны гидриды Bi2H2 и BiH3, которые при нагреве являются неустойчивыми и ядовитыми газами. Висмут не взаимодействует с углеродом, азотом и кремнием[8].
Взаимодействие висмута с серой или с сернистым газом сопровождается образованием сульфидов BiS, Bi2S3.
Висмут проявляет стойкость по отношению к концентрированной соляной и разбавленной серной кислотам, но растворяется азотной кислотой и царской водкой.
Висмут реагирует с тетраоксидом диазота с образованием нитрата висмута:
При нагревании с концентрированной серной кислотой растворяется с образованием BiH(SO4)2, тогда как с разбавленной серной кислотой растворяется с образованием сульфата висмута:
Взаимодействие висмута с фтором, хлором, бромом и йодом сопровождается образованием различных галогенидов:
С металлами способен образовывать интерметаллиды — висмутиды[1][9].
Стоимость
Цены на висмут на мировом рынке неустойчивы, что определяется как колебанием спроса и предложения, так и падением или ростом производства свинца, которое приводит соответственно к росту или снижению производства висмута, являющегося ценным сопутствующим материалом в свинецсодержащих концентратах. Начиная с 1970-х годов, самая низкая цена висмута составляла 3,5 долл./кг и отмечалась в 1980 г., а самая высокая — 15 долл./кг — в 1989 г. В конце 1995 г. цена на висмут чистотой 99,99 % составляла 8,8 долл./кг[10].
Цены за килограмм продукта со склада в США за период с января по сентябрь поднялись на 8,8 доллара США (с 19,80 до 28,60 долларов за килограмм (франко-борт)).
Цены на слитки висмута со склада в Роттердаме с января по сентябрь 2011 года возросла на 4,2 доллара (с 22,20 до 26,40 долларов за килограмм (СИФ)).
Применение
Металлургия
Висмут имеет большое значение для производства так называемых «автоматных сталей», особенно нержавеющих, и очень облегчает их обработку резанием на станках-автоматах (токарных, фрезерных и др.) при концентрации висмута всего 0,003 %, в то же время не увеличивая склонность к коррозии. Висмут используют в сплавах на основе алюминия (примерно 0,01 %), эта добавка улучшает пластические свойства металла, резко упрощает его обработку.
Катализаторы
В производстве полимеров трёхокись висмута служит катализатором, и её применяют, в частности, при получении акриловых полимеров. При крекинге нефти некоторое применение находит оксид-хлорид висмута.
Термоэлектрические материалы
Монокристалл теллурида висмутаВисмут применяется в полупроводниковых материалах, используемых, в частности, в термоэлектрических приборах. К таким материалам относятся теллурид (термо-э.д.с. теллурида висмута 280 мкВ/К) и селенид висмута. Получен высокоэффективный материал на основе висмут-цезий-теллур для производства полупроводниковых холодильников суперпроцессоров.
Детекторы ядерных излучений
Некоторое значение для производства детекторов ядерного излучения имеет монокристаллический иодид висмута. Германат висмута (Bi4Ge3O12, краткое обозначение BGO) — распространённый сцинтилляционный материал, применяется в ядерной физике, физике высоких энергий, компьютерной томографии, геологии.
Легкоплавкие сплавы
Синтетический кристалл висмута и слиток, объемом 1 см3.Сплавы висмута с другими легкоплавкими веществами (кадмием, оловом, свинцом, индием, таллием, ртутью, цинком и галлием) обладают очень низкой температурой плавления (некоторые — ниже температуры кипения воды, а наиболее легкоплавкий состав с висмутом имеет температуру плавления около +41 °C[11]). Наиболее известны сплав Вуда и (без кадмия) сплав Розе. Применения таких легкоплавких сплавов включают в себя:
- теплоносители;
- припои;
- элементы противопожарной сигнализации;
- специальные смазки, работающие в вакууме и тяжёлых условиях;
- клапаны, при расплавлении открывающие просвет для протекания жидкостей и газов, например ракетных топлив;
- предохранители в мощных электрических цепях;
- уплотнительные прокладки в сверхвысоковакуумных системах;
- фиксирующие составы для сломанных конечностей в медицине;
- термометрические материалы в жидкостных термометрах;
- материалы для изготовления выплавляемых моделей в литье и т. д.
Измерение магнитных полей
Металлический висмут особой чистоты служит материалом для производства обмотки для измерения сверхсильных магнитных полей, ввиду того, что при увеличении магнитного поля электросопротивление висмута резко возрастает, и в то же время достаточно равномерно для того, чтобы по изменению сопротивления обмотки, изготовленной из него, судить о напряжённости внешнего магнитного поля.
Производство полония-210
Некоторое значение висмут имеет в ядерной технологии при получении полония — важного элемента радиоизотопной промышленности.
Химические источники тока
Оксид висмута в смеси с графитом используется в качестве положительного электрода в висмутисто-магниевых элементах (ЭДС 1,97—2,1 В, 120 Вт·ч/кг, 250—290 Вт·ч/дм³).
Также в качестве положительного электрода в литиевых элементах находит применение висмутат свинца.
Висмут в сплаве с индием применяется в чрезвычайно стабильных и надежных ртутно-висмуто-индиевых элементах. Такие элементы прекрасно работают в космосе и в тех условиях, где важна стабильность напряжения, высокая удельная энергия, а снижение частоты отказов играет первостепенную роль (например, военные применения).
Трёхфтористый висмут применяется для производства чрезвычайно энергоёмких (3000 Вт·ч/дм³, практически достигнутое — 1500—2300 Вт·ч/дм³) лантан-фторидных аккумуляторов.
Обработка прочных металлов и сплавов
В легкоплавких сплавах висмута (например, сплав Вуда, сплав Розе и др.) производят токарную, фрезерную обработку и сверление урана, вольфрама и его сплавов и других материалов, трудно поддающихся обработке резанием.
Ядерная энергетика
Эвтектический сплав висмут-свинец используется в ядерных реакторах с жидкометаллическим теплоносителем. В частности, в советском подводном флоте такие реакторы использовались на подлодке К-27 и семи подлодках проекта 705 («Лира»).
Малое сечение захвата висмутом тепловых нейтронов и значительная способность к растворению урана вкупе со значительной температурой кипения и невысокой агрессивностью к конструкционным материалам позволяют использовать висмут в гомогенных атомных реакторах, пока не вышедших из стадии экспериментальных разработок.
Магнитные материалы
Интерметаллид марганец-висмут сильно ферромагнитен и производится в больших количествах промышленностью для получения пластичных магнитов. Особенностью и преимуществом такого материала является возможность быстрого и дешёвого получения постоянных магнитов (к тому же не проводящих ток) любой формы и размеров. Кроме того, этот магнитный материал достаточно долговечен и обладает значительной коэрцитивной силой. Кроме соединений висмута с марганцем, также известны магнитотвёрдые соединения висмута с индием, хромом и европием, применение которых ограничено специальными областями техники вследствие либо трудностей синтеза (висмут-хром), либо высокой цены второго компонента (индий, европий).
Топливные элементы
Керамические фазы ВИМЕВОКС, включающие в свой состав оксид висмута с оксидами других металлов (ванадий, медь, никель, молибден и др.), обладают очень высокой проводимостью при температурах 500—700 К и применяются для производства высокотемпературных топливных элементов.
Высокотемпературная сверхпроводимость
Керамики, включающие в свой состав оксиды висмута, кальция, стронция, бария, меди, иттрия и др. являются высокотемпературными сверхпроводниками. В последние годы при изучении этих сверхпроводников выявлены фазы, имеющие пики перехода в сверхпроводящее состояние при 110 К.
Производство тетрафторгидразина
Висмут в виде мелкой стружки или порошка применяется в качестве катализатора для производства тетрафторгидразина (из трехфтористого азота), используемого в качестве окислителя ракетного горючего.
Электроника
Сплав состава 88 % Bi и 12 % Sb в магнитном поле обнаруживает аномальный эффект магнитосопротивления; из этого сплава изготовляют быстродействующие усилители и выключатели.
Вольфрамат, станнат-ванадат, силикат и ниобат висмута входят в состав высокотемпературных сегнетоэлектрических материалов.
Феррит висмута применяется в качестве магнитоэлектрического материала.
Медицина
Из соединений висмута в медицине шире всего используют его трёхокись Bi2O3. В частности, её применяют в фармацевтической промышленности для изготовления многих лекарств от желудочно-кишечных заболеваний, а также антисептических и заживляющих средств. Кроме того, в последнее время на её основе разрабатывается ряд противоопухолевых препаратов для лечения онкологических заболеваний.
Оксид-хлорид висмута находит применение в медицине в качестве рентгеноконтрастного средства и в качестве наполнителя при изготовлении кровеносных сосудов. Кроме того в медицине находят широкое применение такие соединения, как галлат, тартрат, карбонат, субсалицилат, субцитрат и трибромфенолят висмута. На основе этих соединений разработано множество медицинских препаратов (включая такие широко используемые, как мазь Вишневского).
В качестве противоязвенных средств используются: висмута трикалия дицитрат (висмута субцитрат) (код АТХ A02BX05), висмута субнитрат (A02BX12), ранитидина висмута цитрат (A02BA07).
Пигменты
Ванадат висмута применяется в качестве пигмента (ярко-жёлтый цвет).
Косметика
Оксид-хлорид висмута применяется как блескообразователь в производстве лака для ногтей, губной помады, теней и др.
Охота
Висмут является относительно безопасным для окружающей среды. Это позволяет использовать дробь из висмута взамен традиционного и токсичного свинца[12].
Биологическая роль
Содержание висмута в человеческом организме составляет:
- мышечная ткань — 0,32×10−5 %
- костная ткань — менее 0,2×10−4 %
- кровь — ~0,016 мг/л
- ежедневный приём с пищей 0,005-0,02 мг.
Содержание в организме среднего человека (масса тела~70 кг) невелико, но точные данные отсутствуют. Данные о токсической и летальной дозах также отсутствуют[13].
Изотопы
Природный висмут состоит из одного изотопа 209Bi, который считался самым тяжёлым из существующих в природе стабильных изотопов. Однако в 2003 году было экспериментально доказано, что он является альфа-радиоактивным с периодом полураспада 1,9±0,2·1019 лет. Таким образом, все известные изотопы висмута радиоактивны. Но поскольку период полураспада 1,9±0,2·1019 лет на много порядков больше, чем даже возраст современной Вселенной, то природный висмут, состоящий из одного изотопа 209Bi, может считаться практически радиоактивно безвредным для человека.
Кроме 209Bi, известны ещё более трёх десятков (пока 34) изотопов, у большинства из которых есть изомерные состояния. Среди них есть три долгоживущих:
- 207Bi 31,55 года;
- 208Bi 0,368·106 лет;
- 210mBi 3,04·106 лет;
Все остальные радиоактивны и короткоживущи: периоды их полураспада не превышают нескольких суток.
Изотопы висмута с массовыми числами от 184 до 208 и от 215 до 218 получены искусственным путём, остальные — 210Bi, 211Bi, 212Bi, 213Bi и 214Bi — образуются в природе, входя в цепочки радиоактивного распада ядер урана-238, урана-235 и тория-232.
Интересные факты
Висмут в твёрдом состоянии имеет меньшую плотность, чем в жидком. Этим свойcтвом обладают лишь немногие вещества: среди элементарных, помимо висмута, германий и галлий[14] и некоторые соединения, например вода.
Висмут является сильнейшим диамагнетиком, причем эффект диамагнетизма на нём можно наблюдать в простых лабораторных условиях, в отличие от других доступных, но очень слабых диамагнетиков. Подвешенный на тонкой нити образец висмута заметно на глаз отталкивается от любого полюса магнита. Имея достаточно большие блоки висмута и мощный магнит, даже в домашних условиях можно увидеть, что силы отталкивания достаточно чтобы оторвать магнит от опоры. Это так называемая диамагнитная левитация[15].
См. также
Примечания
- ↑ 1 2 3 4 5 Химическая энциклопедия: в 5 т. / Кнунянц И. Л. (гл. ред.). — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 379-380. — 623 с. — 100 000 экз.
- ↑ Висмут в Химической энциклопедии
- ↑ Chemistry of arsenic, antimony, and bismuth. — 1998. — P. 41. — ISBN 978-0-7514-0389-3
- ↑ 1 2 3 Под ред. Дрица М. Е. Свойства элементов. — Металлургия, 1985. — С. 292-302. — 672 с.
- ↑ Вольфсон Ф. И., Дружинин А. В. Главнейшие типы рудных месторождений. — М.: Недра, 1975. — 392 с.
- ↑ ВИСМУТ
- ↑ Юхин Ю. М., Михайлов Ю. И. Химия висмутовых соединений и материалов. — СО РАН, 2001. — С. 19-21. — 360 с.
- ↑ Славинский М. П. Физико-химические свойства элементов. — Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1952. — С. 426-432. — 764 с.
- ↑ Лидин Р.А. и др. Химические свойства неорганических веществ: Учеб. пособие для вузов. — 3-е изд., испр. — М.: Химия, 2000. — 480 с. — ISBN 5-7245-1163-0
- ↑ Денисов В. М., Белоусова Н. В., Моисеев Г. К. и др. Висмутосодержащие материалы: строение и физико-химические свойства/ Уро РАН. — Екатеринбург, 2000. — 527 с.
- ↑ Сплав IndAlloy 15, состоящий из Bi (42,9 %), Cd (5,10 %), In (18,3 %), Pb (21,7 %), Hg (4,00 %), Sn (8,00 %). Matweb LLC. Matherial Property Data.
- ↑ http://www.nordis.fi/patruunat/vihtavuori-haulikon-patruunat/ ассортимент патронов с висмутовой дробью
- ↑ Эмсли Дж. Элементы. — М.: Мир, 1993. — 256 с.
- ↑ Чиркин В. С. Теплофизические свойства материалов. — Государственное издательство физико-математической литературы, 1959. — С. 187-192. — 356 с.
- ↑ Опыты по магнитной левитации (финский язык). Видеозапись «левитации» магнита между двух блоков висмута: [1], [2].
Ссылки
Электрохимический ряд активности металлов | |
---|---|
Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2, W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au |
Висмут: для загара
Висмут относится к умеренно токсичным для организма человека ультрамикроэлементам. Он влияет на образование «пигмента загара» – меланина – и участвует в процессах оссификации.
Суточная потребность организма человека точно не установлена, есть данные, что оптимальное среднесуточное поступление висмута составляет 5–20 мкг.
Токсичная и летальная доза для человека не определены. Опасным считается хроническое поступление висмута в количествах 1–1,5 г в день.
В организм человека висмут попадает в основном с пищей, а также с воздухом и водой. Всасывание висмута, поступившего в желудочно-кишечный тракт, незначительное и составляет около 5%. После всасывания висмут обнаруживается в крови в виде соединений с белками, а также проникает к эритроцитам. Между органами и тканями висмут распределяется относительно равномерно. Некоторое накопление висмута может наблюдаться в печени, почках (до 1 мкг/г), селезенке и костях. Накапливается висмут и в головном мозге.
Висмут, прошедший через желудочно-кишечный тракт, выделяется в виде сульфида висмута, окрашивая кал в темный цвет. Резорбированный висмут выделяется с мочой.
Биологическая роль в организме человека. О физиологической роли висмута известно немного. Уровень знаний сегодняшнего дня позволяет сделать вывод об отсутствии какой–либо существенной физиологической роли висмута в организме человека. Висмут, возможно, индуцирует синтез низкомолекулярных белков, участвует в процессах оссификации, образует внутриклеточные включения в эпителии почечных канальцев. Возможно, этот элемент имеет генотоксические и мутагенные свойства.
Висмут влияет на образование в организме человека «пигмента загара» – темно–коричневого пигмента меланина, который дезактивирует свободные радикалы, возникающие после облучения организма ультрафиолетом и ионизирующим излучением, а также в результате некоторых ферментативных процессов и реакций аутоокислення.
Висмут относится к категории тяжелых металлов, он является умеренно токсичным элементом. Некоторые источники даже называют висмут «вредным» тяжелым металлом. Будучи очень близким по своим свойствам к свинцу, висмут гораздо менее ядовит. В связи с этим экологи ратуют за постепенную замену свинца на висмут в промышленных и производственных процессах.
Растворимые соли висмута ядовиты и по характеру своего действия (хотя и в меньшей степени) аналогичны солям ртути. Водорастворимых солей висмута очень мало и, соответственно, вероятность встречи с ними невелика.
Используемые в медицине соли висмута фактически нерастворимы в воде, применяются в виде коллоидных растворов и не имеют высокой токсичности. Однако, при длительном или интенсивном приеме препаратов, содержащих висмут, возможно возникновение осложнений. Одно из основных проявлений – так называемая «висмутовая кайма» – воспаление, возникающее из–за отложения сернистого висмута по краям десен. Возможны нарушения и со стороны мочевыводящих путей.
Канцерогенность висмута не установлена.
Профессиональные отравления или кожные заболевания при работе с висмутом почти не отличаются. Однако хроническое отравление висмутом может привести к изменению белкового, углеводного и липидного обменов, снижению содержания гемоглобина в крови и другим нарушениям.
Синергисты и антагонисты висмута. Неизвестны.
Признаки недостаточности висмута: данные о клинических проявлениях, вызываемых дефицитом висмута, отсутствуют.
Повышенное содержание висмута в организме. Интоксикация обычно наблюдается лишь при длительном воздействии на организм солей висмута в больших дозах. Однако встречаются случаи ятрогенных, профессиональных и бытовых отравлений.
Механизм токсического действия висмута изучен мало. Установлено, что при отравлении солями висмута поражаются почки, центральная нервная система, печень, кожа и слизистые оболочки.
Длительный прием препаратов висмута в больших дозах может вызвать симптомы «висмутовой» энцефалопатии (особенно у больных с нарушением функции почек).
Основные проявления избытка висмута: снижение памяти, бессонница признаки поражения нервной системы (нарушение чувствительности, ригидность затылка), слабость сердечной деятельности, аритмия, появление темной каймы вокруг десен, пигментация слизистой оболочки десен и полости рта; стоматит, фарингит, затруднение глотания; слюнотечение, тошнота, рвота, боли в животе, метеоризм, диарея; токсический гепатит с жировой дегенерацией и циррозом; альбуминурия, цилиндры в моче, «висмутовые» дерматиты, потеря аппетита, упадок сил, похудание.
Висмут необходим: соединения висмута нашли свое применение в медицине. Субгаллат висмута при нанесении на кожу и слизистые оболочки вызывает уплотнение коллоидов внеклеточной жидкости, слизи, экссудата и образует защитную пленку, которая предохраняет окончания чувствительных нервов от раздражения и которая способна снижать болевые ощущения и препятствовать развитию отека.
Субнитрат висмута в виде мазей и присыпок используется как защитное и противовоспалительное средство при дерматите, экземе, эрозиях и язвах кожи. При назначении внутрь в виде суспензий, гелей или таблеток соли висмута (субсалицилат висмута, субцитрат висмута и ряд других), образуют на поверхности слизистых оболочек желудочно-кишечного тракта защитную пленку, – хелатные соединения с белковым субстратом. Эта пленка способствует уменьшению местного воспалительного процесса, заживлению пептических язв и снижению числа рецидивов. Препараты висмута обладают антибактериальным действием (подавляют рост Helicobacter pylori).
Комбинированные препараты, в состав которых входит нитрат висмута основной (Викалин, Викаир), оказывают вяжущее, противокислотное и умеренное послабляющее действие. Соединения висмута используются при воспалительных заболеваниях желудка и кишечника, язве желудка и двенадцатиперстной кишки, диарее различного генеза и т.д.
Пищевые источники висмута: поступление висмута в организм с водой или пищей незначительно. Гораздо более вероятным представляется поступление висмута в организм с лекарственными препаратами при приеме их внутрь или через кожу (при наружном применении).
Что такое висмут, его свойства, соединения, получение и применение :: SYL.ru
Что такое висмут? Удивительный металл необычной формы и внешности, который еще в Средневековье использовался алхимиками во многих опытах. Его называли tectum argenti, что переводится, как «производство серебра», ведь люди действительно считали, что этот металл наполовину состоит из него. Его применяли во многих сферах и даже добавляли в сплавы, из которых делали холодное оружие – так мечи приобретали особый блеск и красоту. Что же представляет собой этот элемент, и какими особенностями он обладает?
Нахождение в природе
Рассказывая о том, что такое висмут, следует отметить, что в земной коре этот элемент содержится в количестве 2х10−5 % по массе, а в морской воде 2х10−5 мг/л.
Также он находится в рудах. В этих полезных ископаемых висмут содержится, как в форме собственных минералов, так и в виде примесей в сульфатных солях и сульфидах других металлов.
Порядка 90 % висмута добывается посредством извлечения его из проходящих обработку медных, оловянных и свинцово-цинковых руд, а также из концентратов. В них обнаруживаются сотые, а порой и десятые доли процента этого вещества.
Крайне редко в природе встречаются висмутовые руды. В них наблюдается высокая концентрация вещества – от 1 % и выше. Состав таких руд включает в себя самородный висмут (образуется в гидротермальных жилах), висмутин (простой сульфид), тетрадимит, козалит, бисмит, бисмутит, виттихенит, айкинит и галеновисмутит.
Месторождения
Висмут – металл, который в высоких концентрациях скапливается, как правило, в горных породах (пегматиты), в средне- и высокотемпературных гидротермальных и в контактово-метасоматических месторождениях.
Как уже говорилось выше, он обычно образует комплексные руды с другими элементами. Они также отличаются, в основном по типу оруденения. В Боливийской провинции, например, распространены сульфидно-касситеритовые месторождения, из которых извлекают этот металл. В Забайкалье — кварц-вольфрамитовые.
В России и за рубежом особенно распространены гидротермальные месторождения. В Средней Азии и Италии – медно-висмутовые. В Германии, США и Канаде – пятиэлементные. В таких месторождениях самородный висмут ассоциируется с арсенидами серебра, кобальта и никеля, а еще с ураном.
Но самое масштабное месторождение данного металла находится в Перу, в городе Серро-де-Паско. Висмут там добывают в больших количествах, извлекая его в процессе переработки свинцовых концентратов.
Процесс получения
В продолжение темы о том, что такое висмут, стоит рассказать, как именно его добывают.
Получение этого металла основано на переработке руды, а также свинцовых и медных концентратов посредством методов, используемых в сферах пиро/гидрометаллургии.
Есть и другой способ, но он используется лишь в случае получения висмута из сульфидных соединений. Процесс подразумевает переработку медных концентратов, сопровождающуюся осадительной плавкой с железным скрапом и флюсом.
Как правило, происходит процесс получения висмута по формуле: Bi2S3 + 3Fe à 2Bi + 3FeS.
В том случае, если используются окисленные руды, то металл восстанавливают углеродом под слоем флюса. Происходит это в температурном режиме от 900 до 1000 °C. Углерод, кстати, может быть заменен сульфитом натрия. С применением данного кристаллогидрата можно восстановить оксид висмута при меньшей температуре (800 °C).
Для получения сульфида данного металла применяют соду или гидроксид натрия. В этих случаях устанавливается температура в 950 и 500-600 градусов соответственно.
Специфика процесса
Отдельно стоит сказать про извлечение висмута из чернового свинца. Данный процесс специфичен тем, что он подразумевает выделение металла при помощи кальция или магния. Висмут при этом, имея вид соединения CaMg2Bi2, накапливается в верхних слоях.
Как в дальнейшем металл очищается от магния или кальция? Посредством его переплавки под щелочным слоем с добавлением окислителя NaNO3. Затем полученное вещество подвергают электролизу с получением шлама (отходные вещества). Этот продукт и переплавляют в черновой висмут.
Важно оговориться, что гидрометаллургический способ получения данного элемента характеризуют более высокие экономические показатели и соответствующая чистота полученного вещества. Этот метод основан на растворении висмутосодержащих руд, сплавов и полупродуктов. Для этого используется соляная и азотная кислоты.
За растворением следует выщелачивание получившейся жидкости. Для осуществления этого процесса используют серную кислоту или растворы хлорида натрия. Это последний этап, затем висмут извлекают и очищают посредством экстракции.
Кстати, еще есть методы двухстадийной перегонки, зонной плавки и гидрометаллургического рафинирования. Их применяют для получения самого чистого висмута.
Модификации металла
Что такое висмут? Визуально это – серебристо-белый металл, переливающийся различными оттенками. Чистый висмут отливает преимущественно розовым. Металл, в котором доминирует какой-либо другой цвет, является аллотропной модификацией.
Их, кстати, немало. Модификации возникают вследствие воздействия высокого давления. Если подвергнуть висмут температуре в +25 °C и давлению в 2,57 ГПа, то кристаллическая решетка этого вещества претерпит полиморфное превращение. Ее форма перестанет быть ромбоэдрической и станет моноклинной.
Также изменения решетки происходит при других показателях давления (5 ГПа, 4,31 ГПа и 2,72 ГПа). А если довести его до уровня в 7,74 ГПа, то она и вовсе приобретет кубическую форму. Тетрагональной решетка становится при давлении в 2,3—5,2 ГПа.
Физические свойства
Висмут – химический элемент, являющийся поистине уникальным. Лишь у немногих веществ при их плавлении наблюдается повышение плотности, и он к ним относится. Когда висмут переходит в жидкое состояние из твердого, данный показатель изменяется с 9,8 г/см3 до 10,07 г/см3.
С ростом температуры увеличивается и удельное электрическое сопротивление этого вещества. При обычных условиях (+17.5 °C), данный показатель составляет 1,2 мкОм·м. При плавлении сопротивление уменьшается. При температуре в 269 °C, когда висмут еще находится в твердом состоянии, оно равно 2,67 мкОм·м. А когда она повышается до 272 °C, то показатель сразу падает до 1,27 мкОм·м.
Если сравнивать висмут с другими металлами, то по свойствам к нему ближе всего будет ртуть. У них обоих низкая теплопроводность, составляющая 7,87 Вт/(м·К) при 300 К.
Магнитные свойства
Конечно же, рассказывая про свойства висмута, нельзя не отметить, что это самый диамагнитный металл из всех существующих. Его магнитная восприимчивость равна 1,34·10−9 при 293 K. И данное качество, при наличии висмута, можно заметить невооруженным взглядом. Если подвесить образец металла на нитку и поднести к нему магнит, то он заметно от него отклонится.
Важнейшие соединения
Их тоже стоит отметить вниманием. Соединений у висмута масса. Но наиболее характерными для него являются те, которые обладают степенью окисления +3 и +5. Вот несколько примеров:
- Оксид висмута (II) BiO. Выглядит как кристаллы серо-черного цвета. Вещество окисляется при температуре в 180 °С, в условиях повышенной влажности. Вступает в реакцию с хлороводородной кислотой, поддается восстановлению монооксидом углерода и водородом.
- Оксид висмута (III) Bi2O3. Представляет собой кристаллы желтого цвета тетрагональной или моноклинной формы. До 1750 °С находятся в твердом состоянии. Плохо растворяются в гидроксидах, аммиаке, ацетоне и в воде, но хорошо в кислотах. Оксид получают, как правило, посредством нагревания висмута в кислороде.
- Гидроксид висмута (III) Bi(OH)3. Выглядит, как аморфный порошок белого цвета. Плохо растворяется в воде и щелочах высокой концентрации, но хорошо в хлориде аммония и глицерине.
- Сульфид висмута (III) Bi2S3. Кристаллы ромбоэдрической формы серо-черного цвета. Имеют ярко выраженные термоэлектрические свойства. Полностью гидролизуются в воде, но не поддаются растворению в минеральных кислотах, сульфидах и прочих жидкостях. Поддается восстановлению кремнием, углеродом и водородом.
- Оксид висмута (V) Bi2O5. Порошок темно-коричневого цвета. При нагревании разлагается, в щелочах и кислотах растворяется. Добывается окислением висмута в щелочных растворах высокой концентрации.
Нитрат висмута
Это – неорганическое соединение с формулой Bi(NO3)3. Оно представляет собой смесь азотной кислоты и соли металла висмута. Выглядят, как бесцветные кристаллы, похожие на соль или сахар. Их можно растворить в воде, вследствие чего нитрат висмута образует кристаллогидрат. Но в подкисленных растворах данное соединение устойчиво.
Интересно, что кристаллогидрат этого вещества способен плавиться при температуре в 75 °С, причем в собственной же кристаллизационной воде.
У него масса химических свойств. Растворенный в воде основной нитрат висмута при кипячении полностью гидролизуется. Происходит сольволиз. Вещество взаимодействует с жидкостью и разлагается с образованием новых соединений. То же самое произойдет, если кристаллогидрат хранить на воздухе.
Стоит отметить, что нитрат может вступать в реакции с холодной концентрированной соляной кислотой, щелочами, фторидами и окислителями (вследствие этого образуются висмутаты).
Применение нитрата
Используют его в нескольких сферах. В фармакологии основной нитрат висмута широко распространен, как эффективный антисептический препарат. Его используют при кожных заболеваниях, а также при недугах желудочно-кишечного тракта.
Еще нитрат вводят в состав кремов от веснушек, отбеливающих средств для лица, светлые краски для волос и осветлители.
Кроме перечисленного, пигмент добавляют в испанские и жемчужные белила.
Где используют металл?
Применение висмута в наши дни очень распространено. Данный элемент используют в самых разных сферах.
Висмут ценится за свою легкоплавкость. Его используют при производстве автоматических огнетушителей – делают для них предохранители.
Еще из него изготавливают модели для отливки сложных деталей, поскольку висмут имеет повышенные литейные свойства, и может заполнить мельчайшие детали формы. Им заливают металлографические шлифы, используют в протезировании. Вот еще несколько способов его применения:
- Висмут добавляют к олову, чтобы оно не рассыпалось в порошок при низких температурах. Атомы этого металла будто бы «цементируют» его решетку.
- Из марганцево-висмутового сплава изготавливают постоянные магниты.
- Висмут добавляют в количестве 0.01 % к другим сплавам, что улучшает их пластические свойства.
- Трехокись этого металла используется в производстве полимеров как катализатор.
- С применением висмут-цезий-теллура изготавливают качественный материал, используемый в создании полупроводниковых холодильников.
- В ядерной физике, геологии и томографии применяется германат висмута — сцинтилляционный материал.
- Для получения полония-210 также необходимо добавление этого вещества.
Перечень можно продолжить. Металл используют как химический источник тока, материал для обработки прочных сплавов, применяют его в ядерной энергетике и в изготовлении топливных элементов, в производстве тетрафторгидразина. Сферы многогранны. Это лишний раз подтверждает уникальность обсуждаемого вещества.
Сфера медицины
Выше уже было сказано, что в некоторые лечебные препараты висмут, а точнее, его нитрат, активно добавляется. Но на этом его применение в медицине не заканчивается.
Соли висмута – одно из немногих активных веществ, которое может уничтожить бактерии Helicobacter Pylori, провоцирующие язвенную болезнь. Это было установлено недавно. Но уже сейчас добавляется во многие препараты висмут. А точнее, его субнитрат, трикалия дицитрат и ранитидина висмута цитрат.
Также доказано, что применение медикаментов с содержанием данного вещества снижает токсический эффект от химиотерапии. А на основе висмутовых соединений (трибромфенолят, субцитрат, карбонат, тартрат и т. д.) разработана масса медицинских препаратов.
Кстати, оксохлорид висмута активно применяется как рентгеноконтрастное средство и как наполнитель при изготовлении кровеносных сосудов.