Свойства глюкозы – Глюкоза в спорте, медицине, промышленности. Универсальное топливо для тела | ФИТНЕС | ЗДОРОВЬЕ | СПОРТИВНОЕ ПИТАНИЕ | ВИТАМИНЫ | ТРЕНИРОВКИ | НОВОСТИ

59. Глюкоза. Физические свойства

Глюкоза – бесцветное кристаллическое вещество, хорошо растворимое в воде, сладкое на вкус (лат. «глюкос» – сладкий):

1) она встречается почти во всех органах растения: в плодах, корнях, листьях, цветах;

2) особенно много глюкозы в соке винограда и спелых фруктах, ягодах;

3) глюкоза есть в животных организмах;

4) в крови человека ее содержится примерно 0,1 %.

Особенности строения глюкозы

1. Состав глюкозы выражается формулой: С6Н12O6, она принадлежит к многоатомным спиртам.

2. Если раствор этого вещества прилить к свежеосажденному гидроксиду меди (II), образуется ярко-синий раствор, как в случае глицерина.

Опыт подтверждает принадлежность глюкозы к многоатомным спиртам.

3. Существует сложный эфир глюкозы, в молекуле которого пять остатков уксусной кислоты. Из этого следует, что в молекуле углевода пять гидроксильных групп. Этот факт объясняет, почему глюкоза хорошо растворяется в воде и имеет сладкий вкус.

Если раствор глюкозы нагреть с аммиачным раствором оксида серебра (I), то получится характерное «серебряное зеркало».

Шестой атом кислорода в молекуле вещества входит в состав альдегидной группы.

4. Чтобы составить полное представление о строении глюкозы, надо знать, как построен скелет молекулы. Поскольку все шесть атомов кислорода входят в состав функциональных групп, следовательно, атомы углерода, образующие скелет, соединены друг с другом непосредственно.

5. Цепь атомов углерода прямая, а не разветвленная.

6. Альдегидная группа может находиться только в конце неразветвленной углеродной цепи, и гидроксильные группы могут быть устойчивы, находясь лишь у разных атомов углерода.

7. Глюкоза одновременно и альдегид, и многоатомный спирт: она альдегидоспирт.

8. В растворе глюкозы содержатся молекулы не только с открытой цепью атомов, но и циклические, в которых нет альдегидной группы.

9. Процесс превращения альдегидной формы в циклическую обратим. В растворе существует подвижное равновесие между ними. Данное явление называется мутаротацией.

Молекул, которые содержат альдегидную группу, недостаточно, чтобы ярко проявилась реакция глюкозы с фуксинсернистой кислотой.

60. Химические свойства глюкозы и ее применение

Химические свойства альдегидной формы глюкозы:

а) глюкоза – это вещество с двойственной химической природой;

б) как многоатомный спирт глюкоза образует сложные эфиры;

в) как альдегид она окисляется. Окислительное действие аммиачного раствора оксида серебра (I) на глюкозу можно записать следующим образом:

г) окислителем альдегидной группы глюкозы может служить и гидроксид меди (II). Если к небольшому количеству свежеосажденного гидроксида меди (II) прилить раствор глюкозы и смесь нагреть, то образуется красный оксид меди (I). Уравнение реакции окисления глюкозы гидроксидом меди (II) аналогично уравнению для альдегидов;

д) альдегидная группа глюкозы может быть восстановлена.

Тогда образуется шестиатомный спирт (сорбит): СН2ОН-СНОН-СНОН-СНОН-СНОН-СН2ОН.

Виды брожения.

1. Спиртовое брожение идет под действием фермента дрожжей: С6Н12O6 → 2С2Н5ОН + 2СO2.

2. Под действием фермента молочнокислых бактерий происходит молочнокислое брожение глюкозы: C6H12O6 → 2СН3-СН(ОН) – СOОН – молочная кислота.

Особенности молочной кислоты:

1) это соединение с двойственной химической функцией, в ней сочетаются свойства спирта и карбоновой кислоты;

2) процесс образования молочной кислоты происходит при скисании молока;

3) появление кислоты в молоке можно установить при помощи лакмуса;

4) молочнокислое брожение имеет большое значение в переработке сельскохозяйственных продуктов;

5) с ним связано получение молочных продуктов: простокваши, творога, сметаны, сыра;

6) молочная кислота образуется в процессе квашения капусты, силосования кормов и выполняет при этом консервирующую роль.

Способы применения глюкозы.

1. Глюкоза – ценное питательное вещество.

2. Крахмал пищи в пищеварительном тракте превращается в глюкозу, которая кровью разносится по всем тканям и клеткам организма.

3. Как вещество, легко усваиваемое организмом и дающее ему энергию, глюкоза находит и непосредственное применение в качестве укрепляющего лечебного средства.

4. Сладкий вкус обусловил применение ее в кондитерском деле (в составе патоки) при изготовлении мармелада, карамели, пряников и т. д.

Глюкоза: формула, строение и свойства

Строение глюкозы

Название «углеводы» сохранилось с тех времен, когда строение этих соединений еще не было известно, но был установлен их состав, которому соответствует формула Cn(H2O)m. Поэтому углеводы относили к гидратам углерода, т.е. к соединениям углерода и воды – «углеводам». В наше время большинство углеводов выражают формулой CnH2nOn.
1. Углеводы используются с глубокой древности — самым первым углеводом (точнее смесью углеводов), с которой познакомился человек, был мёд.
2. Родиной сахарного тростника является северо-западная Индия-Бенгалия. Европейцы познакомились с тростниковым сахаром благодаря походам Александра Македонского в 327 г. до н.э.
3. Свекловичный сахар в чистом виде был открыт лишь в 1747 г. немецким химиком А. Маргграфом.
4. Крахмал был известен ещё древним грекам.
5. Целлюлоза, как составная часть древесины, используется с глубокой древности.
6. Термин слова “сладкий” и окончание — оза- для сахаристых веществ было предложено французским химиком Ж. Дюла в 1838 г. Исторически сладость была главным признаком, по которому то или иное вещество относили к углеводам.
7. В 1811 г. русский химик Кирхгоф впервые получил глюкозу гидролизом крахмала, а впервые правильную эмпирическую формулу глюкозы предложил шведский химик Я. Берцемус в 1837 г. С6Н12О6
8. Синтез углеводов из формальдегида в присутствии Са(ОН)2 был произведён А.М. Бутлеровым в 1861 г.
Глюкоза является бифункциональным соединением, т.к. содержит функциональные группы – одну альдегидную и 5 гидроксильных. Таким образом, глюкоза — многоатомный альдегидоспирт.

Структурная формула глюкозы имеет вид:

Сокращённая формула имеет вид:

Молекула глюкозы может существовать в трех изомерных формах, причем две из них являются циклическими, одна – линейной.

Все три изомерных формы находятся в динамическом равновесии между собой:

циклическая [(альфа-форма) (37%)] <—> линейная (0,0026%) <—> циклическая [(бета-форма) (63%)]
Циклические альфа- и бета- формы глюкозы представляют собой пространственные изомеры, отличающиеся положением полуацетального гидроксила относительно плоскости кольца. В альфа-глюкозе этот гидроксил находится в транс-положении к гидроксиметильной группе -СН2ОН, в бета-глюкозе – в цис-положении.

  Химические свойства глюкозы: 

 Свойства, обусловленные наличием альдегидной группы: 

1. Реакции окисления:
а) с Cu(OH)2:
C6H12O6 + Cu(OH)2↓ ——> ярко-синий раствор


2.Реакция восстановления:
c водородом H2:

В этой реакции может принимать участие лишь линейная форма глюкозы.

 

 

Свойства обусловленные наличием нескольких гидроксильных групп (ОН):


1. Реагирует с карбоновыми кислотами с образованием сложных эфиров (пять гидроксильных групп глюкозы вступают в реакцию с кислотами):

2. Как многоатомный спирт реагирует с гидроксидом меди (II) c образованием алкоголя-та меди (II):


Специфические свойства


Большое значение имеют процессы брожения глюкозы, происходящие под действием органических катализаторов-ферментов (они вырабатываются микроорганизмами).
а) спиртовое брожение (под действием дрожжей):


б) молочнокислое брожение (под действием молочнокислых бактерий):


в) уксуснокислое брожение:

 

г) лимоннокислое брожение:

 

д) ацетон-бутанольное брожение:

Получение глюкозы

1.Синтез глюкозы из формальдегида в присутствии гидроксида кальция (ре-акция Бутлерова):

2. Гидролиз крахмала (реакция Киргофа):

Биологическое значение глюкозы, её применение

Глюкоза — необходимый компонент пищи, один из главных участников обмена веществ в организме, очень питательна и легко усваивается. При её окислении выделяется больше трети используемой в организме энергий ресурс — жиры, но роль жиров и глюкозы в энергетике разных органов различна. Сердце в качестве топлива используется жирные кислоты. Скелетным мышцам глюкоза нужна для “запуска”, а вот нервные клетки, в том числе и клетки головного мозга работают только на глюкозе. Их потребность составляет 20-30% вырабатываемой энергии. Нервным клеткам энергия нужна каждую секунду, а глюкозу организм получает при приёме пищи. Глюкоза легко усваивается организмом, поэтому ее используют в медицине в качестве укрепляющего лечебного средства. Специфические олигосахариды определяют группу крови. В кондитерском деле для изготовления мармелада, карамели, пряников и т.д. Большое значение имеют процессы брожения глюкозы. Так, например, при квашении капусты, огурцов, молока происходит молочнокислое брожение глюкозы, также как и при силосовании кормов. На практике используется и спиртовое брожение глюкозы, например, при производстве пива.

Углеводы действительно самые распространенные органические вещества на Земле, без которых невозможно существование живых организмов. В живом организме в процессе метаболизма глюкоза окисляется с выделением большого количества энергии:

 

 

 

Углеводы. Глюкоза. Химические свойства глюкозы. Применение глюкозы на основе свойств

Доброе время суток, уважаемые десятиклассники!

 Мы начинаем знакомиться с новой группой органических соединений — углеводами.
Углеводы… А это те самые сладости, которые вы так любите, (фрукты, торты, конфеты, варенье, шоколад и т.д., особенно много углеводов содержит виноград). Углеводы жизненно важные вещества, которые необходимы каждому организму. Эти вещества расходуются, и человек должен постоянно пополнять их запасы. Понятно, что вещества, входящие в состав тканей организма, не похожие на те, которые он употребляет в пищу. Организм человека перерабатывает пищевые продукты и в процессе своей жизнедеятельности постоянно расходует энергию, которая, как мы знаем, выделяется при окислении в тканях организма, углеводы входят в состав нуклеиновых кислот, осуществляющих биосинтез белка и передачу наследственных признаков.
Животные и человек не синтезируют углеводы. В зеленых растениях при участии хлорофилла и солнечного света осуществляется ряд процессов преобразования поглощенной из воздуха углекислого газа и впитанной из почвы воды. Конечным продуктом этих процесса – фотосинтеза, является сложная молекула углевода.

Углеводы – важный источник энергии для организма, участвуют в обмене веществ. Основными источниками углеводов являются растительные продукты.  
Физиологи установили, что при физической нагрузке, которая в 10 раз превышает привычную, человек, соблюдающий жировую диету, лишается сил уже через полчаса. А вот углеводная диета позволяет выдержать такую же нагрузку в течение четырех часов. Оказывается, получение организмом энергии из жиров – процесс длительный. Это объясняется малой реакционной способностью жиров, особенно их углеводородных цепей. Углеводы же, хотя и дают меньше энергии, чем жиры, однако выделяют ее намного быстрее. Поэтому, если предстоит основательная нагрузка, предпочтительнее подкрепиться сладким, а не жирным.

Классификация углеводов.

Углеводы – обширный класс природных соединений.
Обратимся к схеме 1. “Классификация углеводов”. В зависимости от числа остатков моносахаридов в молекуле делятся на моносахариды, дисахариды и полисахариды. 

Моносахариды (простые углеводы) – углеводы, которые не гидролизуются. В зависимости от числа атомов углерода подразделяются на триозы, тетрозы, пентозы, гексозы. Для человека наиболее важны глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза.

Дисахариды – углеводы, которые гидролизуются с образованием двух молекул моносахаридов. Наиболее важны для человека сахароза, мальтоза и лактоза.
Полисахариды – высокомолекулярные соединения – углеводы, которые гидролизуются с образованием множества молекул моносахаридов.
Они делятся на перевариваемые и неперевариваемые в желудочно-кишечном тракте. К перевариваемым относят крахмал и гликоген, из вторых для человека важны клетчатка, гемицеллюлоза и пектиновые вещества.
Углеводы часто называют сахаристыми веществами или сахарами. Они могут быть безвкусными, сладкими и горькими. Если сладость раствора сахарозы принимать за 100 %, то сладость фруктозы – 173 %, глюкозы – 81 %, мальтозы и галактозы – 32 %, лактозы – 16 %.

Качественный состав углеводов.


Углеводы – органические соединения, состоящие из углерода, водорода и кислорода, причем водород и кислород входят в соотношении (2 : 1) как в воде, отсюда и название.
На основе этой аналогии русский химик К. Шмидт в 1844 г. предложил термин углевода (углерод и вода), а общая формула углеводов Сn(Н2О)m
Итак, важнейшим представителем моносахаридов является глюкоза. При изучении, каких некоторых тем мы встречались с вами с этим веществом в курсе химии и биологии: химия – альдегиды, спирты; биология – фотосинтез, строение клетки.

Получение глюкозы.

1. Реакция фотосинтеза.

 6СО2 + 6H2O –> С6Н12 О6 + 6О2 +Q 

2. Реакция полимеризации.

3. Гидролиз крахмала.

6Н10О5)n + nH2O –> nС6Н12О6

Физические свойства: 

бесцветное кристаллическое вещество, хорошо растворимо в воде, сладкое на вкус, температура плавления 146оС.


  Строение молекулы глюкозы. Изомерия.

Вывод: таким образом, глюкоза – альдегидоспирт, точнее – многоатомный альдегидоспирт.Установлено, что в растворе глюкозы находится не только её альдегидная форма; но и молекулы циклического строения.
Установлено, что у третьего атома углерода группа – ОН расположена иначе, чем у других атомов углерода распространённое строение глюкозы выглядит так: 


Превращение молекулы линейного строения в молекулу циклического строения объяснимо, если вспомнить что атомы углерода могут вращаться вокруг сигма -связей. Альдегидная группа может приблизиться к гидроксильной группе 5-го атома углерода, поскольку атом кислорода карбонильной группы несёт на себе частичный – заряд, а атом водород гидроксильной группы – частично + заряд.

Осуществляется своеобразный химический процесс: происходит разрыв -связи карбонильной труппы, к атому кислорода присоединяется атом водорода, а атом кислорода гидроксильной группы с атомом углерода замыкают цепь. Циклические формы находятся в равновесии, превращаясь альфа и бетту форму. Таким образом, в водном растворе глюкозы находятся три изомерные формы. Молекула кристаллической глюкозы альфа -форма, при растворении в воде – открытая форма, а затем снова циклическая бетта-форма. Такая изомерия называется динамической (таутомерия).  

Химические свойства глюкозы.
Моносахариды вступают в химические реакции, свойственные карбонильной и гидроксильной группам.

1) Реакция “серебряного зеркала”
Доказать наличие альдегидной группы в глюкозе можно с помощью аммиачного раствора оксида серебра.  Эта реакция называется реакцией серебряного зеркала. Ее используют как качественную для открытия альдегидов. Альдегидная группа глюкозы окисляется до карбоксильной группы. Глюкоза превращается в глюконовую кислоту.
СН2ОН – (СНОН)4 – СОН + Ag2O = СН2ОН – (СНОН)4 – СООН + 2Ag
(Реакцию серебряного зеркала используют в промышленности для серебрения зеркал, изготовления колб для термосов, елочных украшений).




2) Взаимодействие глюкозы с гидроксидом меди (II)





3) Гидрирование глюкозы

Альдегидная группа может быть восстановлена в гидроксильную группу действием водорода в присутствии катализатора.


4) Специфические свойства.Большое значение имеют процессы брожения глюкозы, происходящие под действием органических катализаторов-ферментов (они вырабатываются микроорганизмами).

а) спиртовое брожение (под действием дрожжей)

С6Н12О6=2Н5 ОН + 2СО2

 

б) молочнокислое брожение (под действием молочнокислых бактерий)

в) маслянокислое брожение

Применение глюкозы.

Глюкоза находит применение в различных отраслях промышленности:
  • в кондитерской промышленности при изготовлении мягких конфет, десертных сортов шоколада, тортов и различных диетических изделий;
  •     в хлебопечении глюкоза улучшает условия брожения, придает пористость и хороший вкус изделиям, замедляет очерствение;
  •     в производстве мороженого она занижает точку замерзания, увеличивает его твердость;
  •     при производстве фруктовых консервов, соков, ликеров, вин, безалкогольных напитков, так как глюкоза не маскирует аромата и вкуса;
  •     в молочной промышленности при изготовлении молочных продуктов и продуктов детского питания рекомендуется использовать глюкозу в определенной пропорции с сахарозой для придания этим продуктам более высокой питательной ценности;
  •     в ветеринарии;
  •     в птицеводстве;
  •     в фармацевтической промышленности.

Кристаллическую глюкозу целесообразно использовать для питания больных, травмированных, выздоравливающих, а также людей, работающих с большими перегрузками.

Медицинскую глюкозу применяют в антибиотиках и других лекарственных препаратах, в том числе для внутривенных вливаний, и для получения витамина С. Техническая глюкоза находит применение в качестве восстановителя в кожевенном производстве, в текстильном – при производстве вискозы, в качестве питательной среды при выращивании различных видов микроорганизмов в медицинской и микробиологической промышленности.



Закрепление: 


Источник:  http://festival.1september.ru/articles/532403/

Физико-химические свойства глюкозы


ТОП 10:

Содержание

Введение

Глава 1. Обзор литературы

1.1. Получение глюкозы

1.2. Физико-химические свойства глюкозы

1.3. Подлинность

1.4. Испытание на чистоту раствора глюкозы

1.5. Количественное определение

1.6. Применение раствора глюкозы

1.7. Выводы по обзору литературы

Глава 2. Практическая часть. Валидационная оценка методик качественного и количественного анализа раствора глюкозы для инъекций 5%

2.1. Валидационная оценка методик анализа раствора глюкозы для инъекций по показателю «Специфичность»

2.2. Валидационная оценка методик титриметрического анализа раствора глюкозы для инъекций по показателю «Линейность»

2.3. Валидационная оценка методик титриметрического анализа раствора глюкозы для инъекций по показателю «Прецизионность»

2.4. Валидационная оценка методик титриметрического анализа раствора глюкозы для инъекций по показателю «Правильность»

Общие выводы

Список литературы

 

Введение

Валидация – экспериментальное доказательство пригодности методики для решения поставленной задачи. Валидация методик проводится на этапе подготовки НД на новые ЛС или пересмотре их в дальнейшем.

Цель работы: провести валидационную оценку методик качественного и количественного анализа раствора глюкозы для инъекций по нескольким показателям.

Задачи:

— изучить показатели качества раствора глюкозы для инъекций по литературным источникам;

— экспериментально провести валидационную оценку методик качественного и количественного анализа раствора глюкозы для инъекций по показателям: «специфичность», «линейность», «прецизионность», «правильность»;

— подвести итоги валидационной оценки методик качественного и количественного анализа раствора глюкозы для инъекций.

 

 

Глюкоза

 

Получение глюкозы

Углеводы содержаться в растительном и животном сырье. Глюкоза находится в виноградном соке, в плодах и других органах различных растений. Основным источником получения глюкозы в промышленности является крахмал, который гидролизуют в присутствии минеральных кислот:

(C6H10O5)n+nH2O → nC6H12O6

Глюкозу также можно получить гидролизом сахарозы с участием спиртового раствора хлороводорода. Глюкоза выкристаллизовывается, а фруктоза остается в растворе.

Раствор глюкозы для инъекций готовят следующим образом: к 50, 100, 250 или 400 г глюкозы безводной добавляют раствор соляной кислоты 0,1 М до рН 3,0 – 4,0; 0,26 г натрия хлорида и воды для инъекций до 1 л. Раствор фильтруют, разливают в ампулы из нейтрального стекла по 10, 20, 25 или 50 мл и стерилизуют паром при температуре 100о С в течение 60 минут или насыщенным паром при температуре 119-121оС в течение 5-7 минут.

 

Физико-химические свойства глюкозы

Бесцветные кристаллы или белый мелкокристаллический порошок без запаха, сладкого вкуса. Легко растворим в воде, трудно растворим в 95% этаноле, практически нерастворим в эфире и хлороформе. Удельное вращение от +52 до +53о (10% водный раствор).

 

Подлинность

Реакция подлинности на глюкозу основана на ее способности окисляться.

К раствору 0,2 г препарата в 5 мл воды прибавляют 10 мл реактива Фелинга и нагревают до кипения; выпадает кирпично-красный осадок.

Под воздействием минеральных кислот или щавелевой кислоты глюкоза превращается при нагревании в пробирке на пламени горелки в фурфурол или его производые:

Фурфурол или оксиметилфурфурол, являясь летучими соединениями, взаимодействуют с анилином или прокаином, нанесенным на фильтровальную бумагу, которой накрывают пробирку. Вначале образуется основание Шиффа, имеющее светло-желтую окраску, а затем фурановый цикл раскрывается и получается полиметиновый краситель – производное оксиглютаконового альдегида (малиново-фиолетовое окрашивание):

 

Количественное определение

Количественное содержание препарата определяют иодиметрически: точную навеску глюкозы (0,500 г) помещают в мерную колбу вместимостью 100 мл, растворяют в воде, доводят растворителем до метки.

К 5мл полученного раствора прибавляют 10 мл 0,1 М раствора иода, 10-15 мл 1% раствора натрия гидроксида и оставляют на 10-15 мин. Затем к раствору добавляют 10 мл кислоты серной разведенной и титруют 0,1 М раствором натрия тиосульфата в присутствии крахмала до обесцвечивания раствора.

1 мл 0,05 М раствора иода соответствует 0,0099 г водной глюкозы.

Параллельно проводят контрольный опыт.

Содержание глюкозы (Х) в лекарственном средстве рассчитывают по формуле:

,где

Vk— объем титранта, пошедший на титрование в контрольном опыте,

V-объем титранта, пошедший на титрование в исследуемом образце,

К- поправочный коэффициент,

Т- титр титранта по определяемому веществу,

а- навеска исследуемого образца.

 

Применение раствора глюкозы

В медицинских целях применяют изотонические (4,5-5%) и гипертонические (10-40%) растворы.

Изотонический раствор используют для возмещения дефицита воды в организме, вместе с тем он является источником легко усвояемого организмом ценного питательного материала. При сгорании глюкозы в тканях выделяется значительное количество энергии, которая служит для осуществления функций организма.

При введении в вену гипертонических растворов повышается осмотическое давление крови, усиливается ток жидкости из тканей в кровь, стимулируются процессы обмена веществ, улучшается детоксикационная функция печени, возрастает сократительная деятельность сердечной мышцы, расширяются сосуды, увеличивается диурез.

Растворы глюкозы широко применяют в медицинской практике при гипогликемии, болезнях печени (гепатите, дистрофии печени), токсикоинфекциях, разных интоксикациях (отравлениях наркотиками, синильной кислотой и ее солями, окисью углерода, анилином, мышьяковистым водородом, фосгеном и другими веществами) и иных патологических состояниях, а также при шоке и коллапсе; кроме того, они являются компонентами различных кровезамещающих и противошоковых жидкостей и используются для разведения ЛС при введении их в вену.

Изотонические растворы применяют подкожно (300-500 мл и более), внутривенно капельно (до 2-6 л в сутки) и в клизмах (300-500 мл).

Гипертонические растворы вводят вводят внутривенно по 20-50 мл; при необходимости капельно – до 1-3 л в сутки. Часто глюкозу назначают в сочетании с аскорбиновой кислотой.

Таблица 3. – Результаты титрования

Навеска 0,5% раствора глюкозы, мл 5,0 10,0 15,0 20,0 25,0
Содержание глюкозы в навеске, г 0,025 0,05 0,075 0,1 0,125
V(I2)-V(Na2S2O3), мл 4,0 5,2 6,2 6,8 7,5

 

Строим градуировочный график:

График 1. Зависимость объема титранта от концентрации.

Рассчитываем коэффициент корреляции:

r=0,992513

Заключение: Таким образом результаты оценки методики показывают, что зависимость объема титранта от концентрации глюкозы в растворе является линейной.

Таблица 4. Результаты испытаний

Уровень Взято, г ,мл Найдено, г Х, % iср)2
н 0,02504 2,6 0,0252252 100,74 0,1936
н 0,02504 2,6 0,0252252 100,74 0,1936
н 0,02504 2,5 0,0244255 96,87 11,7649
с 0,05008 5,3 0,0514206 102,68 5,6644
с 0,05008 5,2 0,0504504 100,74 0,1936
с 0,05008 5,3 0,0514206 102,68 5,6644
в 0,07512 7,7 0,0747054 99,45 0,7225
в 0,07512 7,8 0,0756756 100,74 0,1936
в 0,07512 7,6 0,0737352 98,16 4,5796
        Хср=100,3  

 

;

; SD=1,9095;

; RSD=1,9%

Заключение: полученные результаты показывают, что методика является валидной по показателю «Прецизионность» в условиях повторяемости; случайная ошибка незначительна (1,9%).

Таблица 5. – Приготовление модельных растворов глюкозы.

Модельная смесь 1(А1) 2(А2) 3(А3)
Навеска глюкозы,г 0,4 0,5 0,6
Раствора кислоты хлористоводородной 0,1 М до pH 3,0-4,0 до pH 3,0-4,0 до pH 3,0-4,0
Воды очищенной, мл до 10 мл до 10 мл до 10 мл

Раствор А1. Точную навеску глюкозы (0,4 г) помещают в мерную колбу вместимостью 10 мл, растворяют в 5 мл воды очищенной, добавляют 0,1 М раствор кислоты хлористоводородной до pH 3,0-4,0 и доводят водой до метки.

Раствор А2. Точную навеску глюкозы (0,5 г) помещают в мерную колбу вместимостью 10 мл, растворяют в 5 мл воды очищенной, добавляют 0,1 М раствор кислоты хлористоводородной до pH 3,0-4,0 и доводят водой до метки.

Раствор А3. Точную навеску глюкозы (0,6 г) помещают в мерную колбу вместимостью 10 мл, растворяют в 5 мл воды очищенной, добавляют 0,1 М раствор кислоты хлористоводородной до pH 3,0-4,0 и доводят водой до метки.

Растворы Б1, Б2, Б3. В три колбы для титрования переносят по 1,0 мл раствора А1, прибавляют 10 мл воды, 10 мл 0,05 М раствора иода, 3 мл 10% раствора натрия гидроксида. Закрывают склянку пробкой и оставляют на 5 минут в темном месте. Затем прибавляют 5 мл кислоты серной разведенной и титруют 0,1 М раствором натрия тиосульфата до обесцвечивания раствора (индикатор — крахмал).

Растворы Б4, Б5, Б6. В три колбы для титрования переносят по 1,0 мл раствора А2, прибавляют 10 мл воды, 10 мл 0,05 М раствора иода, 3 мл 10% раствора натрия гидроксида. Закрывают склянку пробкой и оставляют на 5 минут в темном месте. Затем прибавляют 5 мл кислоты серной разведенной и титруют 0,1 М раствором натрия тиосульфата до обесцвечивания раствора (индикатор — крахмал).

Растворы Б7, Б8, Б9. В три колбы для титрования переносят по 1,0 мл раствора А3, прибавляют 10 мл воды, 10 мл 0,05 М раствора иода, 3 мл 10% раствора натрия гидроксида. Закрывают склянку пробкой и оставляют на 5 минут в темном месте. Затем прибавляют 5 мл кислоты серной разведенной и титруют 0,1 М раствором натрия тиосульфата до обесцвечивания раствора (индикатор — крахмал).

1 мл 0,05 М раствора иода соответствует 0,0099 г водной глюкозы.

Параллельно проводят контрольный опыт.

Расчет содержания глюкозы провели по формуле:

Xнайдено= ×K×T, где

Vk— объем титранта, пошедший на титрование в контрольном опыте,

V-объем титранта, пошедший на титрование в исследуемом образце,

К- поправочный коэффициент,

Т- титр титранта по определяемому веществу.

Результаты оценки методики количественного определения по показателю «Правильность» занесли в таблицу 6.

Таблица 6. – Результаты испытаний

Уровень Взято, г ,мл Найдено, г Х, % (100-Хi)2
н 0,04008 6,9 0,03978 99,25 0,5625
н 0,04008 6,8 0,04075 101,67 2,7889
н 0,04008 6,9 0,03978 99,25 0,5625
с 0,05000 5,9 0,04948 99,56 0,1936
с 0,05000 6,0 0,04851 97,02 8,8804
с 0,05000 5,9 0,04948 99,56 0,1936
в 0,06004 4,9 0,05918 98,57 2,0449
в 0,06004 5,0 0,05821 96,95 9,3025
в 0,06004 4,8 0,06015 100,18 0,0324
        Хср=99,11  

 

;

; SD=1,752;

; =1,52

< (2,31).

Заключение: сравнивая полученные результаты с табличными значениями можно сделать вывод о том, что методика является валидной по показателю «Правильность».

 

Общие выводы:

Глюкоза — это очень важный углевод, применяемый в самых различных областях. Важное место глюкоза занимает в медицине, как детоксикант и средство для парентерального питания.

В литературном обзоре были рассмотрены характеристика и свойства глюкозы, её получение, качественные реакции и методы количественного определения, а также практическое применение.

В экспериментальной части приведена валидационная оценка методик качественного и количественного анализа раствора глюкозы для инъекций по показателям: «специфичность», «линейность», «прецизионность», «правильность».

Полученные результаты позволяют сделать вывод, что представленные методики пригодны для практического использования и могут быть использованы для качественного и количественного анализа раствора глюкозы для инъекций.

 

 

Список литературы

1. Беликов, В.Г. Фармацевтическая химия. В 2 ч.: Ч.1. Общая фармацевтическая химия; Ч.2. Специальная фармацевтическая химия: Учеб. для вузов. – Пятигорск, 2003. – 720 с.

2. Машковский, М.Д. Лекарственные средства. – 16-е изд., перераб., испр., и доп. – М.: Новая волна: Издатель Умеренков, 2010. – 1216 с.

3. ОФС 42-0113-09 «Валидация аналитических методик»

4. Государственная фармакопея СССР. – Х изд.

5. Руководство к производственной практике по внутриаптечному контролю качества лекарственных средств: учебное пособие / Е.В. Компанцева, Т.Т. Лихота, Г.И. Лукъянчикова, Г.В. Сенъчукова / под редакцией Е.В. Компанцевой. – Пятигорск, 2006.-268 с.

6. Арзамасцев, А.П. Валидация аналитических методов / А.П. Арзамасцев, Н.П. Садчикова, Ю.Я. Харитонов // Фармация. -2006. –Т.55, №4. – С.8-12.

 

 

Содержание

Введение

Глава 1. Обзор литературы

1.1. Получение глюкозы

1.2. Физико-химические свойства глюкозы

1.3. Подлинность

1.4. Испытание на чистоту раствора глюкозы

1.5. Количественное определение

1.6. Применение раствора глюкозы

1.7. Выводы по обзору литературы

Глава 2. Практическая часть. Валидационная оценка методик качественного и количественного анализа раствора глюкозы для инъекций 5%

2.1. Валидационная оценка методик анализа раствора глюкозы для инъекций по показателю «Специфичность»

2.2. Валидационная оценка методик титриметрического анализа раствора глюкозы для инъекций по показателю «Линейность»

2.3. Валидационная оценка методик титриметрического анализа раствора глюкозы для инъекций по показателю «Прецизионность»

2.4. Валидационная оценка методик титриметрического анализа раствора глюкозы для инъекций по показателю «Правильность»

Общие выводы

Список литературы

 

Введение

Валидация – экспериментальное доказательство пригодности методики для решения поставленной задачи. Валидация методик проводится на этапе подготовки НД на новые ЛС или пересмотре их в дальнейшем.

Цель работы: провести валидационную оценку методик качественного и количественного анализа раствора глюкозы для инъекций по нескольким показателям.

Задачи:

— изучить показатели качества раствора глюкозы для инъекций по литературным источникам;

— экспериментально провести валидационную оценку методик качественного и количественного анализа раствора глюкозы для инъекций по показателям: «специфичность», «линейность», «прецизионность», «правильность»;

— подвести итоги валидационной оценки методик качественного и количественного анализа раствора глюкозы для инъекций.

 

 

Глюкоза

 

Получение глюкозы

Углеводы содержаться в растительном и животном сырье. Глюкоза находится в виноградном соке, в плодах и других органах различных растений. Основным источником получения глюкозы в промышленности является крахмал, который гидролизуют в присутствии минеральных кислот:

(C6H10O5)n+nH2O → nC6H12O6

Глюкозу также можно получить гидролизом сахарозы с участием спиртового раствора хлороводорода. Глюкоза выкристаллизовывается, а фруктоза остается в растворе.

Раствор глюкозы для инъекций готовят следующим образом: к 50, 100, 250 или 400 г глюкозы безводной добавляют раствор соляной кислоты 0,1 М до рН 3,0 – 4,0; 0,26 г натрия хлорида и воды для инъекций до 1 л. Раствор фильтруют, разливают в ампулы из нейтрального стекла по 10, 20, 25 или 50 мл и стерилизуют паром при температуре 100о С в течение 60 минут или насыщенным паром при температуре 119-121оС в течение 5-7 минут.

 

Физико-химические свойства глюкозы

Бесцветные кристаллы или белый мелкокристаллический порошок без запаха, сладкого вкуса. Легко растворим в воде, трудно растворим в 95% этаноле, практически нерастворим в эфире и хлороформе. Удельное вращение от +52 до +53о (10% водный раствор).

 

Подлинность

Реакция подлинности на глюкозу основана на ее способности окисляться.

К раствору 0,2 г препарата в 5 мл воды прибавляют 10 мл реактива Фелинга и нагревают до кипения; выпадает кирпично-красный осадок.

Под воздействием минеральных кислот или щавелевой кислоты глюкоза превращается при нагревании в пробирке на пламени горелки в фурфурол или его производые:

Фурфурол или оксиметилфурфурол, являясь летучими соединениями, взаимодействуют с анилином или прокаином, нанесенным на фильтровальную бумагу, которой накрывают пробирку. Вначале образуется основание Шиффа, имеющее светло-желтую окраску, а затем фурановый цикл раскрывается и получается полиметиновый краситель – производное оксиглютаконового альдегида (малиново-фиолетовое окрашивание):

 




Углеводы » HimEge.ru

Углеводы — органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода. Причем, водород и кислород в них стоит в тех соотношениях, что и в молекулах воды (1:2)
Общая формула углеводов Cn(H2O)m, т. е. они как бы состоят из углерода и воды, отсюда и название класса, которое имеет исторические корни. Оно появилось на основе анализа первых известных углеводородов. В дальнейшем было установлено, что имеются углеводы, в молекулах которых нет соотношения 1H : 2O, например, дезоксирибоза — C5H10O4 .  Известны так же органические соединения, состав которых подходит к приведенной общей формуле, но которые не принадлежат к классу углеводов.  К ним относятся, например формальдегид CH2O   и уксусная кислота CH3COOH.
Однако, название «углеводороды» укоренилось и является общепризнанным для этих веществ.
Углеводороды по их способности гидролизоваться можно разделить на три основные группы: моно-, ди- и полисахариды.

Моносахариды —  углеводы, которые не гидролизуются (не разлагаются водой). В свою очередь, в зависимости от числа атомов углерода. Моносахариды подразделяются на триозы (молекулы которых содержат три атома углерода), тетрозы (четыре атома),  пентозы (пять), гексозы (шесть) и т. д.
В природе моносахариды предоставлены преимущественно пентозами и гексозами. К пентозам относятся, например, рибоза C5H10O5  и дезоксирибоза (рибоза, у которой «отняли» атом кислорода) C5H10O4 .  Они входят в состав РНК и ДНК и определяют первую часть названий нуклеиновых кислот.
К гексозам, имеющим общую молекулярную формулу  C6H12O6, относятся, например, глюкоза, фруктоза, галактоза.
 Дисахариды – углеводы, которые гидролизуются с образованием двух молекул моносахаридов,  например гексоз.  Общую формулу подавляющего большинства  дисахаридов вывести несложно: нужно «сложить» две формулы гексоз и «вычесть» из получившейся  формулы молекулу воды – C12H22O10. Соответственно, можно записать  и  общее уравнение гидролиза:

C12H22O10 + H2O → 2C6H12O6
К дисахаридам относятся:
1) Сахароза (обычный пищевой сахар), которая при гидролизе образует одну молекулы глюкозы и молекулу фруктозы. Она содержится в большом количестве в сахарной свекле, сахарном тростнике (отсюда и названия – свекловичный и тростниковый сахар), клене (канадские первопроходцы добывали кленовый сахар), сахарной пальме, кукурузе и т. д.

2)  Мальтоза (солодовый сахар), которая гидролизуется с образованием двух молекул глюкозы. Мальтозу можно получить при гидролизе крахмала под  действием ферментов, содержащихся в солоде, — пророщенных, высушенных и размолотых зернах ячменя.
3) Лактоза  (молочный сахар), которая гидролизуется с образованием  молекул глюкозы и  галактозы. Она содержится в молоке млекопитающих, обладает невысокой сладостью, и используется, как  наполнитель в  драже и аптечных таблеток.

Сладкий вкус разных моно- и дисахаридов различен. Так, самый сладкий  моносахарид – фруктоза —  в 1,5 раза слаще глюкозы, которую принимают за эталон. Сахароза (дисахарид), в свою очередь в 2 раза слаще глюкозы, и в 4-5 раз лактозы, которая почти безвкусна.

Полисахариды – крахмал, гликоген, декстрины, целлюлоза и т.д. – углеводы, которые гидролизуются с образованием множества молекул моносахаридов, чаще всего глюкозы.
Чтобы вывести формулу полисахаридов, надо от молекулы глюкозы «отнять» молекулу воды и   записать выражение с индексом  n: (C6H10O5)n . Ведь именно за счет отщепления молекул  воды в природе образуются ди- и полисахариды.
Роль углеводов в природе и их цена в жизни человека крайне важна. Образуясь в клетках растений в результате фотосинтеза,  они выступают источником энергии  для клеток животных. В первую очередь это относится к глюкозе.
Многие углеводы (крахмал, гликоген, сахароза) выполняют запасающую функцию, роль резерва питательных веществ.
Кислоты ДНК и РНК, в состав которых входят некоторые углеводы (пентозы-рибозы и дезоксирибоза), выполняют функции передачи наследственной информации.
Целлюлоза – строительный материал растительных клеток —  играет роль каркаса для оболочек этих клеток. Другой полисахарид – хитин—  выполняет аналогичную роль в клетках некоторых животных: образуется наружный скелет членистоногих (ракообразных), насекомых, паукообразных.
Углеводы в конечном итоге служат источником нашего питания: мы потребляет зерно, содержащее крахмал, или скармливаем его животным, в организме которых крахмал  превращается в жиры и белки. Самая гигиеническая  одежда изготовлена из целлюлозы или продуктов на ее основе: хлопка и льна, вискозного волокна, ацетатного шелка. Деревянные дома и мебель построены из той же целлюлозы, образующей древесину. В основе производства  кино- и фотопленки все та же целлюлоза. Книги, газеты, письма, денежные банкноты – все это продукция целлюлозно-бумажной промышленности. Значит, углеводы обеспечивают нас самым необходимым для жизни: пищей, одеждой, кровом.
Кроме того, углеводы участвуют в построении сложных белок, ферментов, гормонов. Углеводами являются и такие жизненно необходимые вещества, как гепарин (он играет важнейшую роль – предотвращает свертываемость крови), агар-агар (его получают из морских водорослей и применяют в микробиологической и кондитерской промышленности – вспомните  знаменитый торт «Птичье молоко»).
Необходимо подчеркнуть, что единственным видом энергии на Земле (помимо ядерной, разумеется) является энергия Солнца, а единственным способом ее аккумулирования для обеспечения жизнедеятельности всех живых организмов является процесс  фотосинтеза, протекающий в клетках и приводящий к синтезу углеводов из воды и углекислого газа. Именно при этом превращении образуется кислород, без которого жизнь на нашей планете была бы невозможна:
6CO2 + 6H2O → C6H12O6 + 6O2


Физические свойства и нахождение в природе

  Глюкоза и фруктоза – твердые и бесцветные вещества кристаллические вещества.  Глюкоза содержится в соке винограда (отсюда и название «виноградный сахар») вместе с фруктозой, которая содержится в некоторых фруктах и плодах (отсюда и название «фруктовый сахар»), составляет значительную часть меда. В крови человека и животных постоянно содержится около 0,1% глюкозы (80-120 мг в 100 мл крови). Наибольшая ее  часть (около 70%) подвергается в тканях медленному окислению с выделением энергии и образованием конечных продуктов – воды и углекислого газа (процесс гликолиза):
C6H12O6 + 6O2   → 6CO2 + 6H2O + 2920 кДж
Энергия, выделяемая при гликолизе, в значительной степени обеспечивает энергетические потребности живых организмов.
Повышение содержания  глюкозы в крови уровня  180 мг на 100 мл свидетельствует о нарушении углеводного обмена и развитии опасного заболевания – сахарного диабета.

   Строение молекулы глюкозы

О строении молекулы глюкоз можно судить на основании опытных данных. Она реагирует с карбоновыми кислотами, образуя сложные эфиры, содержащие от 1 до 5 остатков кислоты. Если раствор глюкозы прилить к свежеполученному гидроксиду меди(||), то осадок растворяется и получается ярко-синий раствор соединения меди, т. е. происходит качественная реакция на многоатомные спирты. Следовательно, глюкоза является многоатомным спиртом. Если же подогреть полученный раствор, то вновь выпадает осадок, то уже красноватого цвета, т.е. произойдет качественная реакция на альдегиды. Аналогично, если раствор глюкозы разогреть с аммиачным раствором оксида серебра, то произойдет реакция «серебряного зеркала». Следовательно, глюкоза является одновременно многоатомным спиртом и альдегидом —  альдегидоспиртом. Попробуем вывести структурную формулу глюкозы. Всего атомов углерода в молекуле C6H12O6  шесть. Один атом входит в состав альдегидной группы:
Остальные пять атомов связываются с гидроксигруппами. И наконец с учетом того, что углерод четырехвалентен, расположим атомы водорода:
или:
Однако установлено, что в растворе глюкозы помимо линейных(альдегидных) молекул существуют молекулы циклического строения, из которых состоит кристаллическая глюкоза. Превращение молекул линейной формы  в циклическую можно объяснить, если вспомнить, что атомы углерода могут свободно вращаться вокруг σ- связей, расположенных под углом 109о 28/ при этом альдегидная группа (1-й атом углерода) может приблизиться к гидроксильной группе пятого атома углерода. В первой, под влиянием гидроксигруппы разрывается  π – связь: к атому кислорода присоединяется атом водорода, и «потерявший» этот атом кислород гидроксигруппы  замыкает цикл.
В результате такой перегруппировки атомов образуется циклическая молекула. Циклическая формула показывает не только порядок связи атомов, но и их пространственное расположение. В результате взаимодействия первого и пятого атомов углерода, появляется новая гидроксигруппа у первого атома, которая может занять в пространстве два положения: над и под плоскостью цикла, а потому возможны две циклические формы глюкозы:
1)  α- форма глюкозы – гидроксильные группы при первом и втором атомах углерода расположены по одну сторону кольца молекулы;
2)  β- формы глюкозы – гидроксильные группы находятся по разные стороны кольца молекулы:
В водном растворе глюкозы в динамическом равновесии находятся три ее изомерные формы: циклическая  α- форма, линейная (альдегидная) форма и циклическая β- форма.
В  установившемся динамическом равновесии преобладает β-форма (около 63%), так как она энергетически предпочтительнее —  у нее ОН- группы у первого и второго углеродных атомов по разные стороны цикла. У α-формы (около 37%) ОН-группы у тех же углеродных атомов расположены по одну сторону плоскости, поэтому она энергетически меньше устойчива, чем β-форма. Доля же линейной формы в равновесии очень мала (всего около 0,0026%).
Динамическое равновесие можно сместить. Например, при действии на глюкозу аммиачного раствора оксида серебра количество ее линейной (альдегидной) формы, которой в растворе очень мало, пополняется все время за счет циклических форм, и глюкоза полностью подвергается окислению до глюконовой кислоты.
Изомером альдегидспирта глюкозы является кетоноспирт – фруктоза.

Химические свойства глюкозы

  Химические свойства глюкозы, как и любого органического вещества, определяются ее строением. Глюкоза обладает двойственной функцией, являясь и альдегидом, и многоатомным спиртом, поэтому для нее характерны свойства и многоатомных спиртов и альдегидов.
Реакции глюкозы, как многоатомного спирта
Глюкоза дает качественную реакцию многоатомных спиртов (вспомните глицерин) со свежеполученным гидроксидом меди (ǀǀ), образуя ярко-синий раствор соединения меди (ǀǀ).
Глюкоза, подобно спиртам, может образовывать сложные эфиры.
  Реакции глюкозы, как альдегида
1. Окисление альдегидной группы.  Глюкоза, как альдегид, способна окисляться к соответствующую (глюконовую) кислоту и давать качественные реакции на  альдегиды. Реакция «Серебряного зеркала» (при нагревании):
CH2-OH-(CHOH)4-COH + Ag2O → CH2OH-(CHOH)4-COOH + 2Ag↓
Реакция со свежеполученным Cu(OH)при нагревании:
CH2-OH-(CHOH)4-COH + 2 Cu(OH)→ CH2-OH-(CHOH)4-COOH + Cu2O↓ +H2O

2. Восстановление альдегидной группы. Глюкоза может восстанавливаться в соответствующий спирт (сорбит):
CH2-OH-(CHOH)4-COH + H2  → CH2-OH-(CHOH)4— CH2-OH
  Реакции брожения
Эти реакции протекают под действием особых биологических катализаторов белковой природы — ферментов.

1. Спиртовое брожение:
 C6H12O6 → 2C2H5OH + 2CO2
Издавна применяемое человеком для получения этилового спирта и алкогольных напитков.
2. Молочнокислое брожение:
которое составляет основу жизнедеятельности молочнокислых бактерий и происходит при скисании молока, квашении капусты и огурцов, силосовании зеленых кормов

Глюкоза — Вікіпедія

Матеріал з Вікіпедії — вільної енциклопедії.

Глюкоза
D-glucose
Glucose chain structure.svg
D-glucose-chain-3D-balls.png
Назва за IUPAC (2R,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal
Інші назви Виноградний цукор
Blood sugar
Dextrose
Corn sugar
D-Glucose
Grape sugar
Ідентифікатори
Абревіатури Glc
Номер CAS 50-99-7
PubChem 5793
Номер EINECS 200-075-1
KEGG C00031
Назва MeSH Glucose
ChEBI 4167
RTECS LZ6600000
SMILES OC[[email protected]]1OC(O)[[email protected]](O)[[email protected]@H](O)[[email protected]@H]1O
InChI 1/C12h34O12/c7-1-2-3(8)4(9)5(10)6(11)12-2/h3-11H,1h3/t2-,3-,4+,5-,6+/m1/s1
Номер Бельштейна 1281604
Номер Гмеліна 83256
3DMet B04623
Властивості
Молекулярна формула C6H12O6
Молярна маса 180,16 г/моль
Молекулярна маса 180,063388
Густина 1,54 г/см3
Тпл α-D-glucose: 146 °C
β-D-glucose: 150 °C
Розчинність (вода) 91 g/100 mL
Термохімія
Ст. ентальпія
утворення ΔfHo298
−1271 кДж/моль[1]
Ст. ентальпія
згоряння ΔcHo298
−2805 кДж/моль
Ст. ентропія So298 209,2 Дж/(K·моль)[2]
Теплоємність, cop 218,6 Дж/(K·моль)[2]
Фармакологія
Код ATC B05 CX01
Небезпеки
MSDS ICSC 0865
Індекс ЄС not listed
Якщо не зазначено інше, дані приведені для речовин у стандартному стані (за 25 °C, 100 кПа)
Інструкція з використання шаблону
Примітки картки
D-glucose-chain-3D-balls.png Перетворення між α- і β-D-Глюкозою відбувається через відкриту форму

Глюко́за (від грец. γλυκύς — солодкий) (виноградний цукор, декстроза), С6Н12О6 — важливий моносахарид; безбарвні кристали солодкі на смак, легко розчиняються у воді.

Знаходиться в соці винограду, в багатьох фруктах, а також у крові тварин і людей.

М’язова робота виконується головним чином за рахунок енергії, яка виділяється при окисненні глюкози.

Глюкоза отримується при гідролізі полісахаридів крохмалю і целюлози (під дією ферментів або мінеральних кислот). Погано розчиняється в органічних розчинниках. Неелектроліт. Використовується як засіб посиленого харчування або як лікарська речовина, при обробці тканини. Також препарати на основі глюкози та сама глюкоза використовується у медицині при визначенні наявності та типу цукрового діабету в людини.

Природна кристалічна глюкоза (виноградний цукор) являє собою циклічну альфа-формулу. При розчиненні в воді вона переходить в ланцюгову, а через неї в бета-форму; при цьому установлюється динамічна рівновага між усіма формами.

Бета-форма також може бути виділена в кристалічному вигляді; у водному розчині вона утворює рівноважну систему з іншими формами.

Ланцюгова форма існує лише в розчинах, причому в дуже невеликій кількості, а в вільному вигляді не виділена.

Ізомерні форми сполук, які здатні переходити одна в одну називають таутомерними формами чи таутомерами. Явище таутомерії дуже розповсюджене серед органічних сполук.

  1. ↑ Ponomarev, V. V.; Migarskaya, L. B. (1960). Heats of combustion of some amino-acids. Russ. J. Phys. Chem. (Engl. Transl.) 34: 1182–83. 
  2. а б Boerio-Goates, Juliana (1991). Heat-capacity measurements and thermodynamic functions of crystalline α-D-glucose at temperatures from 10K to 340K. J. Chem. Thermodynam. 23 (5): 403–9. doi:10.1016/S0021-9614(05)80128-4. 
D-glucose-chain-3D-balls.pngВ іншому мовному розділі є повніша стаття Glucose (англ.). Ви можете допомогти проєкту, розширивши поточну статтю за допомогою перекладу з англійської.
  • Дивитись автоперекладену версію статті з мови «англійська».
  • Перекладач повинен розуміти, що відповідальність за кінцевий вміст статті у Вікіпедії несе саме автор редагувань. Онлайн-переклад надається лише як корисний інструмент перегляду вмісту зрозумілою мовою. Не використовуйте невичитаний і незкоректований машинний переклад в статтях української Вікіпедії!
  • (англ.) Google’s machine translation is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text до Української Вікіпедії.
  • Не перекладайте текст, який видається недостовірним або низької якості. Якщо можливо, перевірте текст за посиланнями, поданими в іншомовній статті.
  • Докладні рекомендації: див. Вікіпедія:Переклад.

Химические свойства глюкозы.

Химические свойства моносахаридов обусловлены особенностями их строения.

Рассмотрим химические свойства на примере глюкозы.

Моносахариды проявляют свойства спиртов и карбонильных соединений.

I. Реакции по карбонильной группе

1. Окисление.

а) Как и у всех альдегидов, окисление моносахаридов приводит к соответствующим кислотам. Так, при окислении глюкозы аммиачным раствором гидрата окиси серебра образуется глюконовая кислота (реакция «серебряного зеркала»).

 

D- глюкоза + 2[Ag(NH3)2]OH → аммониевая соль D- глюконовой кислоты + 2Ag↓ + 3NH3↑+ H2O

Эти реакции являются качественными на глюкозу как альдегид.

Соль глюконовой кислоты – глюконат кальция – известное лекарственное средство.

б) Реакция моносахаридов с гидроксидом меди при нагревании так же приводит к альдоновым кислотам.

 

D- галактоза + 2Cu(OH)2 D- галактоновая кислота + Cu2O↓ + 2H2O

голубой кирпично-красный

Эти реакции являются качественными на глюкозу как альдегид.

в) Более сильные окислительные средства окисляют в карбоксильную группу не только альдегидную, но и первичную спиртовую группы, приводя к двухосновным сахарным (альдаровым) кислотам. Обычно для такого окисления используют концентрированную азотную кислоту.

 

D- глюкоза HNO3(конц.) –––––––→ сахарная (D- глюкаровая) кислота

2. Восстановление.

Восстановление сахаров приводит к многоатомным спиртам. В качестве восстановителя используют водород в присутствии никеля, алюмогидрид лития и др.

 

D- глюкоза LiAlH4 + H2 ––––→ D- сорбит

 

3. Несмотря на схожесть химических свойств моносахаридов с альдегидами, глюкоза не вступает в реакцию с гидросульфитом натрия (NaHSO3).

II. Реакции по гидроксильным группам

Реакции по гидроксильным группам моносахаридов осуществляются, как правило, в полуацетальной (циклической) форме.

1. Алкилирование (образование простых эфиров).

При действии метилового спирта в присутствии газообразного хлористого водорода атом водорода гликозидного гидроксила замещается на метильную группу.

 

, D- глюкопираноза + СH3ОН HCl(газ) ––––→ метил-α, D- глюкопиранозид + H2О

 

При использовании более сильных алкилирующих средств, каковыми являются, например, йодистый метил или диметилсульфат, подобное превращение затрагивает все гидроксильные группы моносахарида.

 

СH3I ––––→ NaOH пентаметил-α, D- глюкопираноза

 

2. Ацилирование (образование сложных эфиров).

При действии на глюкозу уксусного ангидрида образуется сложный эфир – пентаацетилглюкоза.

 

––––––––→ пентаацетил-α,D- глюкопираноза

 

3. Как и все многоатомные спирты, глюкоза с гидроксидом меди (II) на холоду с образованием глюконата меди (II) дает интенсивное синее окрашивание – качественная реакция на глюкозу как многоатомный спирт.

 

ярко синий раствор

 

III. Специфические реакции

1. Горение (а также полное окисление в живом организме):

C6H12O6 + 6O2 6CO2 +6H2O

2. Реакции брожения

Кроме приведенных выше, глюкоза характеризуется и некоторыми специфическими свойствами — процессами брожения. Брожением называется расщепление молекул сахаров под воздействием ферментов (энзимов). Брожению подвергаются сахара с числом углеродных атомов, кратным трем. Существует много видов брожения, среди которых наиболее известны следующие:

а) спиртовое брожение

C6H12O6 → 2CH3–CH2OH(этиловый спирт) + 2CO2

б) молочнокислое брожение

C6H12O6 → 2CH3 CH–СОOH(молочная кислота) | OH

в) маслянокислое брожение

C6H12O6 → CH3–CH2–СН2–СОOH(масляная кислота) + 2Н2↑ + 2CO2

 

Упомянутые виды брожения, вызываемые микроорганизмами, имеют широкое практическое значение. Например, спиртовое – для получения этилового спирта, в виноделии, пивоварении и т.д., а молочнокислое – для получения молочной кислоты и кисломолочных продуктов.

Фруктоза вступает во все реакции, характерные для многоатомных спиртов, однако реакции альдегидной группы, в отличие от глюкозы, для нее не характерны.

Химические свойства рибозы C5H10O5аналогичны глюкозе.

Д) Биологическая роль глюкозы.

D-глюкоза (виноградный сахар) широко распространена в природе: содержится в винограде и других плодах, в меде. Она является обязательным компонентом крови и тканей животных и непосредственным источником энергии для клеточных реакций. Уровень глюкозы в крови человека постоянен и находится в пределах 0,08-0,11%. Во всем объеме крови взрослого человека содержится 5-6 г. глюкозы. Такого количества достаточно для покрытия энергетических затрат организма в течение 15 мин. его жизнедеятельности. При некоторых патологиях, например, при заболевании сахарным диабетом, содержание глюкозы в крови повышается, и избыток её выводится с мочой. При этом количество глюкозы в моче может возрасти до 12% против обычного – 0,1%.

3. Дисахариды.

Олигосахариды — углеводы, молекулы которых содержат от 2 до 8-10 остатков моносахаридов, соединенных гликозидными связями. В соответствии с этим различают дисахариды, трисахариды и т. д.

Дисахариды — сложные сахара, каждая молекула которых при гидролизе распадается на две молекулы моносахаридов. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в пище человека и животных. По своему строению дисахариды являются гликозидами, в которых две молекулы моносахаридов соединены гликозидной связью.

Строение

1. Молекулы дисахаридов могут содержать два остатка одного моносахарида или два остатка разных моносахаридов;

2. Связи, образующиеся между остатками моносахаридов, могут быть двух типов:

а) в образовании связи принимают участие полуацетальные гидроксилы обеих молекул моносахаридов. Например, образование молекулы сахарозы;

б) в образовании связи принимают участие полуацетальный гидроксил одного моносахарида и спиртовый гидроксил другого моносахарида. Например, образование молекул мальтозы, лактозы и целлобиозы.

Для установления строения дисахаридов необходимо знать: из каких моносахаридов он построен, какова конфигурация аномерных центров у этих моносахаридов (- или -), каковы размеры цикла (фураноза или пираноза) и с участием каких гидроксилов связаны две молекулы моносахарида.

Дисахариды подразделяются на две группы: восстанавливающие и невосстанавливающие.

Среди дисахаридов особенно широко известны мальтоза, лактоза и сахароза.

Мальтоза (солодовый сахар), являющаяся α-глюкопиранозил-(1-4)-α-глюкопиранозой, образуется в качестве промежуточного продукта при действии амилаз на крахмал (или гликоген), содержит два остатка α-D-глюкозы. Название сахара, чей полуацетальный гидроксил участвует в образовании гликозидной связи, оканчивается на «ил».

В молекуле мальтозы у второго остатка глюкозы имеется свободный полуацетальный гидроксил. Такие дисахариды обладают восстанавливающими свойствами.

К восстанавливающим дисахаридам относится, в часности, мальтоза (солодовый сахар), содержащаяся в солоде, т.е. проросших, а затем высушенных и измельченных зернах хлебных злаков.

 

(мальтоза)

 

Мальтоза составлена из двух остатков D- глюкопиранозы, которые связаны (1–4) -гликозидной связью, т.е. в образовании простой эфирной связи участвуют гликозидный гидроксил одной молекулы и спиртовой гидроксил при четвертом атоме углерода другой молекулы моносахарида. Аномерный атом углерода (С1), участвующий в образовании этой связи, имеет - конфигурацию, а аномерный атом со свободным гликозидным гидроксилом (обозначен красным цветом) может иметь как α- (α- мальтоза), так и β- конфигурацию (β- мальтоза).

Мальтоза представляет собой белые кристаллы, хорошо растворимые в воде, сладкие на вкус, однако значительно меньше, чем у сахара (сахарозы).

Как видно, в мальтозе имеется свободный гликозидный гидроксил, вследствие чего сохраняется способность к раскрытию цикла и переходу в альдегидную форму. В связи с этим, мальтоза способна вступать в реакции, характерные для альдегидов, и, в частности, давать реакцию «серебряного зеркала», поэтому ее называют восстанавливающим дисахаридом. Кроме того, мальтоза вступает во многие реакции, характерные для моносахаридов, например, образует простые и сложные эфиры.

 

СH3I ––––→ NaOH
мальтоза   Октаметилмальтоза

Дисахарид лактоза (молочный сахар) содержится только в молоке и состоит из D-галактозы и D-глюкозы. Это — α-глюкопиранозил-(1-4)-глюкопираноза:

Поскольку в молекуле лактозы имеется свободный полуацетальный гидроксил (в остатке глюкозы), она принадлежит к числу редуцирующих дисахаридов.

Одним из наиболее распространенных дисахаридов является сахароза (тростниковый или свекольный сахар) − обычный пищевой сахар. Молекула сахарозы состоит из одного остатка D-глюкозы и одного остатка D-фруктозы. Следовательно, это − α-глюкопиранозил-(1-2)-β-фруктофуранозид:

В отличие от большинства дисахаридов сахароза не имеет свободного полуацетального гидроксила и не обладает восстанавливающими свойствами.

К невосстанавливающим дисахаридам относится сахароза (свекловичный или тростниковый сахар). Она содержится в сахарном тростнике, сахарной свекле (до 28% от сухого вещества), соках растений и плодах. Молекула сахарозы построена из α, D- глюкопиранозы и β, D- фруктофуранозы.

 

(сахароза)

 

В противоположность мальтозе гликозидная связь (1–2) между моносахаридами образуется за счет гликозидных гидроксилов обеих молекул, то есть свободный гликозидный гидроксил отсутствует. Вследствие этого отсутствует восстанавливающая способность сахарозы, она не дает реакции «серебряного зеркала», поэтому ее относят к невосстанавливающим дисахаридам.

Среди природных трисахаридов важное значение имеют немногие. Наиболее известна рафиноза, содержащая остатки фруктозы, глюкозы и галактозы, которая находится в больших количествах в сахарной свекле и во многих других растениях.

В целом олигосахариды, присутствующие в растительных тканях, разнообразнее по своему составу, чем олигосахариды животных тканей.

Все они имеют ту же эмпирическую формулу С12Н22О11, т.е. являются изомерами.

Сахароза – белое кристаллическое вещество, сладкое на вкус, хорошо растворимое в воде.

Для сахарозы характерны реакции по гидроксильным группам. Как и все дисахариды, сахароза при кислотном или ферментативном гидролизе превращается в моносахариды, из которых она составлена.

Дисахариды – типичные сахароподобные углеводы; это твердые бесцветные кристаллические вещества, очень хорошо растворимое в воде, имеющие сладкие вкус.

Из дисахаридов наибольшее значение имеет сахароза C12H22O11:

Молекула сахарозы состоит из остатков молекул глюкозы и фруктозы.



Дата добавления: 2017-06-13; просмотров: 7777;


Похожие статьи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *